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SUMMARY

The Experimental Study of Dynamic Effects of Crew Motion in a Manned

Orbital Research Laboratory (MORL) was conducted by Douglas Aircraft
Company, Inc. , Missile and Space Systems Division, for the NASA Langley
Research Center.

The program objectives were to define the routine crew motions in a

spacecraft, select a simulation scheme, design and fabricate all equipment

required for simulation, perform a test series to record the disturbance

profiles resulting from these motions, and reduce and analyze the data obtained
from the simulation.

The four general categories of crew motion investigated were: (I)body

segment motion, (2) exercise, (3) translation, and (4) console operation.

The maximum, nominal, and minimum disturbance levels which could be

achieved by the test subjects were recorded during the locomotion and con-

sole tasks. Only the nominal disturbance level was recorded during simula-

tion of the various exercises and body segment motions. The body segment

motions investigated included single pendulum arm motion, double pendulum

arm motion, head motion, waist bending, and leg motion. The exercises

simulated included trunk bending, neck bending, rowing, pedal ergometer,

oscillating acceleration, trunk rotation, and full-length body exercise.

Translation involved the investigation of free soaring, guided soaring, velcro

walking, and compression walking. Console operation was limited to

torquing, sliding, and push-pull operations.

The zero-g simulation scheme basically consists of a counterbalanced

pendulous support of the test subject. The suspended subject performs the

selected crew motions while in contact with an instrumented platform. The

crew motions performed on the platform produce forces and moments which

are transmitted through the platform to a six-component force balance. This

force balance transforms the three orthogonal forces and three orthogonal

moments induced by the subject into electrical signals. These signals are

transmitted to the data reduction system which transforms the electrical

signals into tabulated data, plotted data, and an analytical expression defining

the best fit curve to the plotted data.

After the simulation scheme was selected, the simulation hardware was

designed and fabricated. This hardware consists of a velcro walk strip,

velcro shoes, foot restraint, hand rails, full-length body exercise machine,

pedal ergometer, compression walking simulator, waist restraint, and a
control console.

The experimental test program was initiated following fabrication of the

simulation equipment. Two subjects were selected to perform the crew
motions. Each crew motion was performed three times by each subject.



This ensured that the results were repeatable and that should data be lost

during one test, data of the crew motion would be available from the remain-

ing two tests. Data from one of the three tests of each crew motion are

presented in this report. These data are presented graphically in the results

section and are also presented as a Fourier series in Appendix C.

The test results indicate a large range of forces, cyclic in nature, for

the various crew motions performed. In the body segment motion tests,

typical forces transmitted to the standing surface are between 3 Ib for the

double pendulum arm motion and 9 ib for the bending at the waist motion.

The predominate periods for these cyclic disturbances are approximately

0.9 sec and 1.7 sec, respectively. The locomotion tests indicate that quiet

velcro walking could be performed without transmitting more than i0 ib of

force to the walking surface, while for the free soaring locomotion a normal

force up to 350 Ib can be attained. The predominate sinusoidal periods for

these two locomotion tests are I. 0 and 0.5 sec, respectively. For the con-

sole operation tests, the disturbance force is nearly the same for the

torquing, push-pull, or sliding operations° For a minimum level of the

torquing operation, a normal force to the console of 3 Ib is produced. For

the maximum level, this force is increased to i0 lb. The predominate

periods for these cyclic disturbances of the console operation are in the

range of 0. Z to i. 0 sec. The range of disturbing forces for the exercises is

between 3 ib for the neck bending exercise and i00 [b for the oscillating

acceleration exercise. Table I shows the range of the disturbance imparted

to the standing surface for the various crew motions performed. To investi-

gate the controllability (attitude hold and rate stabilization) of a space station,

the various distrubances must be completely described. This description

consists of the amplitude and time history of the disturbances. Of the major

disturbances--gravity gradient, aerodynamic, and crew motion--influencing

MORL attitude, only crew motion does not lend itself to simple analytical or

predictable expressions.

With the amplitude and frequency characteristics of the various crew

motion disturbances presented in this report, the controllability of a space

station can be determined more thoroughly.

All but four of the tests are based on producing disturbances in the local

horizontal plane. This primarily avoids the suspension force errors. For

these tests the data for the x and y components of force and the z component

of moment is calculated to be 6% data. The errors in the suspension force,

Fz, will result in errors for the x and y components of moment. However,

from all the tests performed, the moments which were referenced to the

center of the platform (near the subject's feet) were small compared to the

moments produced from the forces acting at a nominal distance. This

nominal distance is 6 to 8 ft of separation between the man and the center of

mass of a space station. It is illustrated that the moments produced from

pure angular accelerations of the various body segments are negligible when

compared to the moments produced by the segment forces acting at nominal
distances.

2



TABLE I

CREW MOTION RANGE OF DISTURBANCES

Motion

Single pendulum ar1_-_n_otion

Double pendulum arm motion

Standing surface
peak dis trubance

range (ib)

2.6to 3

3.2 to4

Leg motion

Bending at waist

Console operation

Guided locomotion

Velcro walking

Compression walking

Free soaring

4 to7.6

8 to 9

3 to 13

6 to 50

I0 to 50

I0 to 74

30 to 350

Pedal ergometer exercise

Trunk bending exercise

Full length body exercise

Oscillating accele ration exercise

19 to 20

13 to 33

40 to 6Z

98 to II0

The test results indicate that for MORL fine pointing requirements, the
crew member may have to be isolated from the spacecraft. This would be
accomplished with vibration isolators between the astronaut and the space-
craft to reduce the disturbance transmitted to the spacecraft.

Similar crew motion tests should be conducted for the subject wearing a
space suit. This study would simulate the extra vehicular activity (EVA) and
would be valuable for use in the orbtial astronomy support facility program.



INTRODUCTION

As spacecraft develop to a point at which they can accommodate more
crew members, effects of the crew motions on the spacecraft attitude become
increasingly critical. This criticallity was defined in the MORE study. The
crew motion effect on the spacecraft's performance ,.*.Tilldetermine which
experiments can be adequately handled by the laboratory's control system and
which experiments would require separate control or isolation from the
laboratory's motion. To define thoroughly the performance capability of a
spacecraft being perturbed by crew motions, knowledge of the complete
spectrum of the actual distrubances is required.

This report presents the results of a 7-1/Z-month Douglas study per-
formed to investigate the distrubance profiles of routine crew motions in a
simulated shirt-sleeve, zero-g environment. The investigation included both
the analytical prediction of crew motion distrubance profiles and the perform-
ance of a test series in a simulated zero-g environment to record the crew
motion distrubance profiles.

Simulation of the zero-g environment can be accomplished by supporting
the individual body segments with a force equal to and opposite the magnitude
of the force resulting from gravity. This can be accomplished in several
ways. The subject can be immersed in a water tank and weighed to the point
of neutral buoyancy. Another method is to suspend the subject in a servo-
controlled gimbal system. Still another method is to suspend the body
segments of the subject with cables extending over pulleys and attached to
counte rw eights.

The hydrostatic tank simulation technique is not applicable whenever
dynamic data are required. The viscosity of the water reduces both the
frequency and magnitude of the distrubance forces. The servo-controlled
gimbal system was eliminated primarily because of the cost and development
time associated with its implementation.

The counterbalanced pendulous support technique selected for this simu-
lation offers the advantage of being simple, yet provides zero-g simulation
with 6_0accuracy for limited body motions.

The balance of the report presents the simulation technique,
motions simulated, the test results, and the conclusions and
recommendations made as a result of the study.

the crew



SYMBOLS

F

I

L

M

t

W

x, y, z

e

6

g

force, pounds

moment of inertia, slug-ft Z

pendulum arm length, ft

moment, ib-ft

time, seconds

weight, pounds

rectangular Cartesian coordinates

pendulum displacement, ft

angular displacement x-y plane, radians

angular displacement y-z plane, radians

angular rate x-y plane, radians per second

angular acceleration x-y plane, radians per second Z

6

k



i

v

Y

z

ni

nx

ny

nz

LAL

LAU

LLL

LLU

T

RAL

RAU

RLL

RLU

SUBSCRIPTS

along i axis

along x axis

along y axis

along z axis

hinge axis parallel to the i axis

hinge axis parallel to the x axis

hinge axis parallel to the y axis

hinge axis parallel to the z axis

left arm, lower

left arm, upper

left leg, lower

left leg, upper

trunk

right arm, lower

right arm, upper

right leg, lower

right leg, upper



SIMULA TION TECHNIQ UE

The experimental setup for the simulation scheme shown in fig. 1 and
fig. Z basically consists of a counterbalanced pendulous support of the test
subject to allow contact with an instrumented platform. The platform simu-
lates an interior surface of the space station and is held vertically and
attached to the outer sleeve of a six-component force balance. The adapter
of the balance is attached to a rigid sting, which in turn is supported by a
base fabricated of heavy steel pipe.

The subject's body suspension system includes two arm supports, two leg
supports, a torso sling, and a pelvic sling. The arm supports are circular
padded members which fit snugly around the arm. Velcro strips on both ends
of the support provide adjustment capability to various arm sizes and also are
easily connected and disconnected. The left arm support is connected directly
to the suspension cable. However, the right arm support is first connected
to a U-shaped aluminum rod, which in turn is connected to a suspension
cable. The U-shaped rod permits arm motion without interference with the
suspension cable, while still maintaining vertical support of the center of
mass of the arm. Both leg supports are similar to the arm supports, the
only difference being the circular size of the supports. Again, the left leg
support is attached directly to the suspension cable, while the right leg
support is attached with U-shaped aluminum rod. This rod permits leg
motion without interference with the suspension cable while still maintaining
a vertical support of the center of mass of the leg. Support for the torso of
the subject is provided by an aluminum L-shaped bracket to which a padded
sling has been attached. This sling is riveted to the bracket at one end and
attaches with a velcro strip to the other end of the bracket, permitting easy
adjustment to various chest sizes. The L-shaped aluminum bracket is
attached to an offset aluminum rod which allows left arm movement without
interference with the torso support cable. A rigidly supported helmet is
attached to the L-shaped bracket, as shown in fig. i. Longitudinal adjust-
ment is provided by two interlocking bolts. Support for the pelvic region is
provided by a padded sling attached directly to the suspension cable.

The six suspension cables which attach to the body-segment supports are
strung over bah bearing aircraft control pulleys to the respective counter-
balance weights. These pulleys are 54 ft above the subject and thus minimize
the pendulum effect discussed in the error analysis section of Appendix A.

The platform upon which the simulated crew motions are performed is a
3 x 6 ft surface which has a honeycomb core and aluminum skin material.
The two desirable characteristics of this material, stiffness and small
weight, were required for the accurate transmission of the distrubance pro-
files to the force balance. Errors introduced by this platform are presented
in the error analysis section of Appendix A.
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Figure 1. Test Setup
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All of the simulated spacecraft equipment is attached to this platform

during the appropriate portion of the test series. This spacecraft equipment

includes a velcro walk strip, velcro shoes, foot restraints, hand rail, loco-

motion restraint, full-length body exercise machine, compression walking

simulator, pedal ergometer, control console, waist restraint, and toe

restraint.

The velcro walk strip is an 18 x 66 in. surface of nylon velcro pile.

Strips of the velcro are cemented to an aluminum backing with velcro bonding

adhesive. This aluminum base is readily attached with six bolts to the

platform.

Velcro shoes were designed to be used for walking on the velcro walk

strip. These shoes are basketball shoes with a new bonded velcro sole. The

velcro sole is constructed by first bonding 3/4-in. urethane foam to the sole

of the basketball shoe. Next, an aluminum heel and half sole are bonded to

the urethane foam° Nylon velcro hook is then bonded to the aluminum half

sole and heel. This construction allows maximum contact of the velcro

surfaces yet permits the flexibility required for walking.

Foot restraints are used for attaching the test subject's feet to the force

platform. The foot restraint is an elastic toe strap to which a l-in. wide

adjustable heel strap has been attached. The toe of the shoe is inserted into

the toe strap and is held in this position by enclosing the subject's heel with

the heel strap. The foot restraints are mounted on a 24 x 6-in. aluminum

surface, which permits easy installation of the restraint on the force plat-

form. The subject, when restrained by the foot restraints, is held to the

force platform, yet has freedom to rock on his toes. This rocking freedom

is required to minimize the possibility of damage to the subject's ankle.

Additional support for the subject is provided by the hand rail. This

hand rail is an aluminum rod bent into the shape of a U and attached to the

force table. The subject is provided a 68-in. -long support, 37-I/Z in. from

the force table, when the hand rail is attached.

Support for the subject is also provided by the locomotion restraint.

restraint is identical to the hand rail, except that the support is provided

4 in. from the force table instead of 37 I/Z in.

This

The full-length body exercise machine (shown in fig. 87 in the exercise

section of this report) contains the base plate, stanchion, stanchion brace,

handle bar, and negator springs. The base plate provides a means of

attaching the exercise machine to the force platform. Attached to the base

plate are the stanchion, stanchion brace, and negator springs. The stanchion

is an 88-in. long aluminum rod which acts as a guide for the handle bar. The

handle bar rides freely on the stanchion. Attached to the handle bar are the

negator spring cables, which continuously supply a ZZ to Z5 ib pull on the

handle bar toward the base plate. The stanchion is further supported by the

attachment of the stanchion brace to the stanchion and base plate. The full-

length body exercise machine is designed to provide both flexibility and

isotonic-type exercises.



Implementation of the compression walking simulator is achieved by
attaching a 30 x 36 in. plywood bounce board to the stanchion of the full-length
body exercise machine. The bounce board is located 80 in. from the force
platform for the compression walking and oscillating acceleration tests and

84 in. from the force platform (corresponding to the floor-to-ceiling height

in the MORL) for the nominal and minimum distrubance free soaring tests.

The pedal ergometer (shown in fig. 83 in the exercise section) is essen-

tially a bicycle which the subject pedals. The resistance of the pedal motion

is adjustable and was set at 150 W during this experiment.

The control console, waist restraint, and toe restraint are shown in

fig. 56 in the console operation section of this report. Mounted on the left

side of the control console are the hand wheel, slide bar, and phone jack

re ceptacle.

The subject is supported at the console by the waist and toe restraints.
The waist restraint is a belt to which two swiveled bars are attached. These

bars extend from the subject's hips to thecontrol console rail and are

fastened around the rail. Both ends of the bars are hinged and SWiveled to

allow freedom of lateral and longitudinal rotation of the subject about the rail.

Additional support is provided by the toe restraint, which is a flat velcro

surface for foot support.

A black velveteen surface with I ftZ white grid lines was laid underneath

the suspended subject to provide a contrasting surface for motion picture and

multiple-exposure camera documentation of the test series. The multiple-

exposure camera recorded 24 sequential motions per second on the same

negative. The cameras were located 16 ft above the subject.

The crew motions performed on the platform produce forces and moments

which are transmitted through the platform to a six-component force balance

shown in fig. 3. This force balance transforms the three orthogonal forces

and three orthogonal moments induced by the subject into electrical signals.

The accuracy of the balance is increased by calibrating the balance prior to

the test series. This calibration procedure involves the loading of each

component separately while measuring the output from all six components.

These calibration data are used to produce a 6 x 6 matrix that is used to

reduce the raw data obtained from the crew motion experiments. These

6 x 6 matrixes minimize the cross-coupling and nonlinearity effects of the

force balance.

Additional improvement is provided by referencing initial force and

moment data to zero, thus eliminating the effect of the equipment, etc. ,
attached to the force balance.

The reduced data are referenced to the surface of the force platform, as

shown in figs. 4, 5, and 6 in the simulation technique section.
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Data produced from these experiments are processed by a high-speed

data gathering system which has a total sampling capacity of i0 000 samples

a second. The raw data are recorded and reduced by an SDS 930 Computer.

Reduced data consist of tabulated data, plotted data, and a Fourier series

defining the best-fit curve to the plotted data. Only the plotted data and the

Fourier series representing the plotted data are presented in this report.

°o
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PRESENTATION OF RESULTS

Test Description

A test description of the various crew motion activities performed by the
two subjects ........ _-^ -_--" I_ox_uw_. _,,= l_,,yolca, body measurements of the two subjects
are presented in Appendix D. The crew motion activity is divided into four

categories: (I) body segment motion, (Z) locomotion, (3) console operation,
and {4) exercise.

The body segment motion involves simple segment motions, such as an

arm or leg swing. An analytical study was performed for these body segment

motions to compare with the test results. A discussion of this comparison

is presented in Appendix B. Combinations of several body segment motions

can be formed to describe more complex activities, such as walking.

The locomotion tests consisted of soaring, guided locomotion (using hand

restraints), and veicro walking. The locomotion tests, unlike the body seg-

ment tests were performed at three different levels of intensity: (1) mini-
mum, (2) nominal, and (3) maximum. The minimum level of locomotion is

used to determine minimum disturbances during critical times of tight attitude
control of a spacecraft. During routine spacecraft operation, the normal

distrubance levels are representative of the crew motion distrubance profiles.

The maximum crew motion disturbance profiles represent the probable force

and moment levels which would be experienced in emergency situations.

The console operation consists of three different tasks a crew member

would have to perform in a typical orbiting spacecraft mission. These tasks

are turning hand wheels, operating sliding controls, and push-pull or phone

jack operations. The console operation, like the locomotion tests, is per-

formed at minimum, nominal, and maximum levels of intensity.

There are three basic types of exercises the crew performs for condi-
tioning: (1) flexibility, (2) strength, and (3) endurance exercises.

A description of the test measurements and procedures is presented in
the following paragraphs.

Test Measurements and Procedures

The forces and torques induced from the crew motion activity are

measured by a six-component force balance. These three orthogonal forces

and three orthogonal moments are referenced to the center of the platform,



which is the floor directly under the subject's feet for most of the tests.

Figs. 4, 5, and 6 show the orientation of the subject and the corresponding

coordinate system for the complete series of tests. The reference angles

shown in figs. 4 and 5 are used to describe the positions of the various body

segments for some of the tests. These positions will be described later in

more detail. In nearly all of these tests an attempt was made to keep the

body segment motion in a single plane; usually this was the local horizontal

or x-y plane, as shown in figs. 4, 5, and 6.

With this single-plane restriction for a body segment motion, a general

form for the induced moments about the reference axes is given by the

foll owing:

M = I + yF -zF (I)
x n n n n

X X Z y

M = I + zF -xF (z)
y n n n n

y y x z

M = I 0 + xF -yF (3)
z n n n n

z z y x

where

M i
= moment in Ib-ft about the ith reference axis as shown in

figs. 4, 5, or 6.

In i
= moment of inertia in slug-ft Z for the particular body segment

about the axis of rotation parallel to the iTM axis

0n i

Fn i

= angular acceleration in rad/sec Z of the particular body

segment about the hinge axis parallel to the ith axis

= force in LB produced along the hinge axis parallel to the iTM

axis from the particular body segment motion

(x, y, z) = component distance in ft from the hinge point of the body

segment rotation to the center of the reference axis

The hinge point forces, Fnx, F n , and Fnz, are the same as those measured

which are termed Fx, Fy, and FYz, respectively. Most of the tests involve

body segment motions in the local horizontal plane, hence the z component

of force measured is an error source including the imbalance of the suspen-

sion system and the effects of small out-of-plane (horizontal) motions.

These two sources of error are not separable because the out-of-plane motion

is not measured. From eqs. (I), (Z), and (3), it is noted that the z compo-

nent of force appears in two of the measured momentsM x and My. Also, for

t..hesegrn.ent motion in the local horizontal plane, the angular accelerations

@nx and @ny will be zero. Therefore, the first two moment equations are

2O



primarily dependent upon the x and y components of force and the z distance
from the reference point to the hinge point of the movable body segment. For
manned spacecraft application, this reference point is the spacecraft center
of mass. Hence, the magnitudes of these two torques are primarily a function
of the man's position in the spacecraft and the x and y components of force.
From eq. (3), the z-axis moment contains the body-segment angular acceler-
ation term. For the tests performed which involved body segment motions,
the forces are dependent upon the angular acceleration and angular rates of
the body segments. Hence, if the forces are small, the angular accelerations
of the body segments will be small. Therefore, a large moment is induced
primarily by increasing the lever arm of the applied forces. The results of
these tests illustrate _naLL_ moments caused by angular accelerations of the
body segment inertias are negligible when compared to the moments produced
by the inertia forces acting at a nominal distance (6 to 8 ft). This nominal
distance of 6 or 8 ft is approximately the shortest distance a crew member
can be placed from the MORL spacecraft center of mass. For most of the
results presented, the moment data are omitted. Only for tests in which the
moments could have some value, other than illustrating that these moments
are small, will they be presented.

Before each test series the force balance is zeroed electrically and

calibrated. The test series are comprised of three repetitions of each type

of crew motion performed. This zeroing and calibration is done while the

subject is in the initial position for the test and is motionless. Some of the

tests require attachment of equipment to the platform, which, in effect, loads

platform. This loading is then zeroed electrically before each test series.

Before the plotted data are shown, an important point regarding their

general characteristics should be noted: because the support mechanism is

a counterbalanced pendulous support, any translation of the body center of

mass in the local horizontal plane from the static position of the pendulous
support will induce a restoring force in the local horizontal plane. This

force is equal to the pendulum angular deflection of the body center of mass
multiplied by the body weight. Although this pendulous error force is a small

percentage of the total disturbance force (see Appendix A), its effect on some

of the test data is easily observed. Before the effects of the pendulous sup-

port on the test data are illustrated a basic principle must be pointed out. In

a true zero-g enrivonment, the vector quantity of the impulse (force x time)
required to accelerate a mass from rest and then decelerate the mass back

to rest is zero. Hence, in the crew motion tests in which body segments

were accelerated and then motions terminated, the disturbing forces and

moments would integrate to zero with respect to time if there were no exter-

nal disturbing forces. As previously described, this simulation is not free of

external disturbances. For example, a walking motion is used to describe

the effects of the pendulous support. In performing the walking motion, the

subject's displacement is centered, as close as possible, over the force bal-

ance measurement unit. Therefore, as the subject moves from the starting

position to the terminating position, the pendulous error force has the shape

of a cosine function for a half cycle (the points of maximum defection being
the starting and terminating points with the zero point of the function being



the position over the force balance). Obviously, integrating a half cycle of a

cosine function over a complete period produces a value of zero for the inte-

gral. This, however, is not the case in the simulation testing. It was men-
tioned that at the start of each test, the force balance is zeroed and

calibrated. Hence, for walking, the gravity component at the start of the test

is zeroed electrically. This, in effect, puts a bias on the cosine curve of the

pendulous error force. Integrating this does not yield the integral value of

zero.

Hence, any test in which the center of mass of the subject is displaced

from the static position of the pendulum will yield bias forces and moments

in which the time integrals are not zero. These data can be useful because

the necessary disturbances for each test are given in an equation form, which

is of more use to the engineer for analyses studies. This equation form is the

first eight terms of the Fourier series. A digital computer is used to evalu-
ate the terms of the Fourier series for each test.

The bias force caused by the pendulum support can be removed from the

Fourier series approximation for a given test by setting the integral of the

series to zero and solving for a new constant term in the Fourier series.

This preserves the harmonics and phase shifts of the sinusoidal terms in the

series which represent the data for the given test.

A discussion of the results of the various tests follows. Each test,

whether performed at a minimum, nominal, or maximum level is performed

three times by each of the two subjects.
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BODY SEGMENT MOTION

The body segment motion series of tests involve simple segment motion

in only one plane. These motions include single pendulum arm swing,

double pendulum arm swing, head motion, bending at the waist, and leg

motion. The coordinate syste:_ shown in fig. 4 is used to define the forces

and moments for the series of tests. As shown in fig. 4, the subject's

longitudinal axis is aligned with the y-axis of the coordinate system. Test

results for the body segment motions are discussed in the following

paragraphs.

Single Pendulum Arm Motion

The single pendulum arm motion is a body segment motion in which the

arm swing is done without bending the elbow, as shown in fig. 7. The initial

position of the left hand is at the thigh. The left arm is rotated until it is

normal to and in front of the body. Fig. 8 shows the two force components,

F x and F. measured for Subject A. The total time of the motion is noted to

be about _ sec. The force component F. (the force normal to the platform)

has a maximum value of approximately _ ib and exhibits a fairly smooth

curve. As the arm is raised, the reaction on the body is in a downward (-y)

and backward (-x) direction. Both the x and y force components start in a

negative direction. The x component is smaller and irregular compared to

the y component of force. Because the arm is rotated about an axis parallel

to the z axis, the force in the direction parallel to the platform or x axis

resulting from the arm motion will be partially negated by a body motion in

the opposite direction. The subject has some limited freedom of rotation

about the z axis. The body attempts to negate any angular momentum because

of a segment rotation about an axis parallel to the z axis. Hence, the peak

z-axis moment obtained during this test was srr_all--I ib-ft.

The double negative peak in the Fy plot is a particular characteristic of
this subject. It indicates two separate arm-acceleration periods.

The positive portion of the Fy plot is produced by the deceleration of the

arm. For the positive portion of Fy, the double peak effect is not nearly as

pronounced as in the negative portion.

The moments about the x and y axes were small. The subject would have

to be within I ft of the spacecraft center of mass for the moments caused by

the angular acceleration of the arm to be as large as the moments resulting

from the cross-product of the inertia forces and distances.

Fig. 9 shows the single pendulum arm motion done by Subject B. The
time for this arm motion is approximately 1. 1 sec, 10_0 longer than the

time used by Subject A. Consequently, the amplitudes of the forces are not



Figure 7 .  Single Pendulum Arm Motion 
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as large because of the smaller acceleration. Subject B does not have the

pronounced double-peak effect as has Subject A for the acceleration of the

arm. The x component of force and the moments are small, as explained

for Subject A.

To predict the forces and torques resulting from single pendulum arm

motion, a mathematical model was derived utilizing the results of the NASA

Man's Analytical Inertia Determination (MAID) program for determining the

body segments mass and inertia properties.

The force equations for the single pendulum arm motion are given in

Appendix B as eqs. (BE9) and (B30) as are the parameters of the segments

and the assumed rate profile.

Substituting the assumed angular acceleration and its derivatives into

eqs. (B29) and (B30), the peak amplitudes for these two forces are approxi-

mately 2 ib each. The results of the simulation showed the maximum y

components of force to be 3 and 2.6 Ib for the two subjects. The maximum

x components of force obtained from the simulation of the arm motion tests

is approximately I. 4 lb. From the simulation data of the single pendulum

arm motion, the acceleration of the arm appears to be variable. The slopes

of the force curves at the start and the end of the motion are small, which

indicates a small initial arm acceleration. The test arm motion was com-

pleted in approximately Z sec, which indicates higher accelerations later in

the arm motion. The analytical description results in a discontinuous force

profile because the assumed acceleration consists of a constant acceleration-

constant deceleration profile. Hence, the wave shape of the predicted and

actual forces only can be compared on the basis of initial- and terminal-force

directions.

The x component of force computed is larger than that measured, as

previously explained.

The mathematical expressions, in the form of Fourier series, eight terms

are given for the x and y components of the forces in figs. 8 and 9. The equa-

tions are presented in Appendix C. The terms of the Fourier Serier were

evaluated and plotted for the single pendulum arm motion of Subject A on

fig. 8 to show the fit accuracy. As shown in fig. 8 there is practically no

error associated with the use of the Fourier series for this motion.

Double Pendulum Arm Motion

The double pendulum arm motion is the same as the single pendulum arm

motion except the arm is allowed to rotate at the elbow during the swing. The

left arm is rotated in the x-y plane (fig. 4) until the elbow is normal to and in

front of the chest, and the fingers touch the left shoulder. Fig. I0 shows a

multiple-exposure photograph of this crew motion. This movement required

approximately I sec.
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Figure 10. Double Pendulum Arm Motion 



Fig. 4 shows the reference angle, @, for describing the various body

segment motions when the subject was suspended perpendicular to the force
table. Time histories of the torso, right and left upper arms, right and left

lower arms, right and left upper legs, and the right and left lower legs were

recorded with a motion picture camera during several of the crew motions.

The Euler angles, with the same reference as @, defining each of those seg-

ments and the translational movement of the head were then plotted as a

function of time for the selected crew motion.

Fig. ii presents the Euler-angle description for the double pendulum

arm motion. Only two plots are required to describe the motion, namely,

the left arm lower, @LAL, and the left arm upper, @LLU- The remaining

body segments that remained motionless during this test are defined by the

following notations: trunk I_uler angle, @T; left leg upper, @LLU; left leg

lower, @LEE; right arm upper, @RAU; right arm lower, @RAL; right leg

upper, @RLU; and right leg lower, @RLL" Fig. i I shows the Subject A
rotated the lower arm 160 ° in 0.8 sec and at a fairly constant rate of 4. Z rad/

sec during the time interval of 0. 3 to 0.8 sec. The upper arm delayed
0.5 sec after the lower arm first motion and then rotated 65 ° The average

rate of upper arm movement is approximately the same as the lower arm,
4. Z rad/sec.

Fig. IZ shows the x and y components of the forces produced by the

double pendulum arm motion of Subject A. Again, the moment data are

omitted because they are insignificant if the subject is several feet from the

spacecraft center of mass or reference point. The maximum amplitude of the

y component of force is approximately 4 lb. Also, the x component of force

is small, as explained for the single pendulum arm motion test.

The initial positive peak of the force Fy appeared in all three tests for
Subject A. It is possible that the subject straightened his arm initially before

starting the swinging motion. The first negative peak is the acceleration of

the lower segment of the arm. The upper segment of the arm did not move

until approximately 0.4 sec later. (This was determined from the motion

picture data by plotting the arm-segment motions for this particular test.)

The second positive peak in the Fy plot results from deceleration of the two

arm segments.

Fig. 13 shows the force data for Subject B in performing the double

pendulum arm motion. The y component does not contain the harmonics noted

for the same test with Subject A (fig. IZ). The y component of force for

Subject B is smooth and has a maximum amplitude of 4.5 lb. The negative

peaking that occurs after 0.8 sec is caused by the deceleration of the lower

arm when the upper arm is nearly parallel to the platform. At this position,

the lower arm is moving in a negative or downward direction. The maximum

moments obtained during this body segment motion for both subjects is Z ib-ft

about the z axis. The phenomenon of near negation of the z-axis moment was

described in the single pendulum arm motion tests.
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The mathematical model for the double pendulum arm motion is given in

Appendix B. With this mathematical model and the rate profile of the arm

motion shown in fig. II, the actual as opposed to the predicted forces can be

compared. The following rate profiles of the upper and lower arm are

obtained from fig. 1 I:

(1) Lower Arm

@LAL = I0 ° for t = 0

_LAL = 20.6 rad/sec Z for 0. IZ < t 5 0. 3Z sec

@LAL -- 4. 14 rad/sec for 0. 3Z < t -<0. 8 sec

@LAL =-34" 3 rad/sec Z for 0.8 < t -< 0.92 sec

(Z) Upper Arm

@LAU = -6° for t = 0

@LAU = 50 rad/sec Z for 0.45 < t -<0.53 sec
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: 4 rad/sec for 0o53 < t < 0.77 sec
LAU

2
: -57. 2 rad/sec for 0.77< t _ 0. 84 sec

LAU

Substituting these rate profiles into eqs. (BI6) and (BI7) of Appendix B,

along with the arm parameters given in Appendix D, the predicted forces are

obtained. As illustrated in fig. IZ, Subject A produced a maximum dis-

turbing force of 4 lb. The results of the mathematical model produce a
maximum force of Z ib with the lower arm movement and a maximum force

of 1g lb with the movement of the upper arm. The i2-1b maximum force

produced by the upper arm is dependent only on the angular acceleration

caused by the upper arm profile shown in fig. ii. If the given segment pro-

files of the upper and lower arms are reasonably accurate, the difference

between the predicted force and the actual force can be accounted for by a

small movement of the torso when performing the arm motion. Because the

mass of the arm is small (0.31 slugs), a small torso movement would reduce

the force caused by the arm motion. These small body motions are not

detectable from the motion picture data.

It should be noted that the models for the segment motion basically are

used to size the force balance unit and to ensure the order of magnitude of
the actual test data.

The equations derived for the test data of the double pendulum arm

motion are given in Appendix G.

Head Motion

For this body segment motion, the subject is in a standing position with

his arms at his side, his head rotated to the right and his feet fixed firmly to

the platform. He then rotates his head from right to left, which completes

this motion.

Fig. 14 shows the force components produced by the head motion of

Subject A. The rotation of the head took approximately 0.85 sec. This head

movement, it should be noted, is a fairly small disturbance. The maximum

forces are on the order of 1.5 lb. The z component of force is not a true

representation of the force because it contains the suspension-force error,

which was described in the previous section on test measurements and

procedures.

The equations derived for the head motion are presented in Appendix C.

The distrubances of Subject B while performing this test were small and were

in the threshold of the measurement capability of the force balance; therefore,

the data are not given.

Bending at the Waist

For waist bending motion the subject is in a standing position with his

arms at his sides. He then bends at the waist, keeping his hands at his side

until his upper torso has rotated approximately 90 ° in the x-y plane (fig. 4).
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Fig. 15 is a multiple exposure photograph of the waist bending motion.

The upper torso rotated 65 ° and the legs rotated 9 ° in the opposite direction.

Fig. 16 presents the Euler-angle description for this motion. Three

plots are required to describe this motion: (I) the right and left legs (both

segments), (2) the torso, and (3) the right and left arms. This time history

shows that Subject A rotated his torso 65 ° and his lower torso or leg rotated

9 ° in the opposite direction. The arms were nearly rigid with the upper

torso. This motion requires approximately 1.4 sec.

Fig. 17 is a plot of the x and y components of the force for Subject A.

The positive portion of the Fy plot results from the acceleration of the upper

torso, which produced a maxlmum force of 9 lb. The negative portion, which

peaked around at approximately 9 Ib, is produced by the deceleration of the

upper torso in halting the movement. The initial positive peak of the x com-

ponent of force is produced by the rocking back of the lower torso bending at

the waist. This causes the total body center of mass to be behind (-x direc-

tion) the feet. After the lower torso has stopped, the reaction force of the

upper torso, which is in a negative x direction, dominates. The maximum

x component of force is, as noted 5 ibo The variation in suspension force

during this motion is approximately 5 ib of the total suspended weight of

I75 lb. Again, the moment data are insignificant, because they are only

approximately I0 ib-ft for this motion.

For this motion, it was noted that each time the subject performed the

motion the forces became higher, the motion duration time became shorter,

and the force curves became smoother. This indicates a limbering-up or

warm-up period for the subject performing the motion.

The forces for Subject B performing this motion are shown in fig. 18.

Peak amplitudes for the y component are +8 and -9 ib, which are nearly the

same as those for Subject A. Subject B took approximately 0. 3 sec longer to

accomplish the z motion than did Subject A.

The mathematical model used to describe this body segment motion was

set up on the basis of the lower torso being fastened rigidly to the platform

with pure rotation of the upper torso. The forces obtained from this model

are given in Appendix B as eqs. (BI9) and (BZ0). Substituting the torso

parameters in these equations, the following are obtained:

= Z.84 "" cos @T @T 2 sin @T) in Ib (4)Fx (@T -

F = Z 84 (@ sin @T + @T 2y " T cos @T) in ib (5)

fig.

The description of the torso rotation, @i' is obtained as follows from
16:

@T -- 2. 31 rad/sec Z for 0 _<t -<0. 7 sec

2
@T -- -2. 31 rad/sec for 0. 7 < t _< i. 4 sec



Figure 15. Bending at  the Waist 
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Essentially, this is constant acceleration and constant deceleration for

the torso. Substituting this rate profile into eqs. (4) and (5), the maximum

x- and y-component forces each are approximately i0 lb. From the test data

of Subject B, the maximum x and y components of force are 3 and 9 ib,

respectively. As in the previous tests, the transmission of force in a paral-

lel direction to the standing surface will be small compared to the force

transmitted normal to the standing surface. The predicted normal force, Fy,
for this test agrees with the test data. Because tl_e upper torso, which is the

larger mass, is rotated, any movements of the smaller body segments have a

smaller influence on the normal force of the waist bending.

The equations derived for the test data of bending at the waist motion are

presented in Appendix C.

Leg Motion

For leg-motion segment motion, the left leg is lifted approximately

i0 in. , as in walking, from the platform. The time required for this move-

ment is 0.5 sec. The leg motion is similar to the double pendulum arm

motions; the major difference is that the lower leg is rotated in a direction

opposite to that of the upper leg.

I_igo 19 is a multiple-exposure photograph of the motion. The left upper

leg rotated 55 ° and the lower leg rotated 35 ° in the opposite direction.

Fig. 20 is the Euler-angle time history of the left leg, upper, @LLU, and

the left leg, lower, @ELL" The other body segments were essentially motion-

less during this test.

The disturbances from the leg motion for Subject A are shown in fig. ZI.

As the leg is raised, or accelerated, a reaction force is produced in the

negative y direction. During the acceleration of the leg, the maximum y

force produced is 5.8 lb. As the leg is decelerated, the reaction force, Fy,

changes direction. The maximum deceleration force produced in the y direc-

tion is 7. 6 lb. The total time of the leg motion is approximately 1 sec. The

x component of force is at most 1 Ib during the _eg motion, which is a smaller

percentage of x-axis force transmission than the arm motions produce

because of the opposite segment motions of the leg segments. As in the

previous motions, the moment data of the leg segment angular accelerations

and, therefore, it is omitted.

Fig. ZZ shows the disturbances of the leg motion for Subject B, who

performed the leg motion in approximately the same time as Subject A,with

a smaller disturbance. This indicates that Subject B did not pick up his leg

as high as did Subject A.

The mathematical model for predicting the forces of the leg motion was

again the double pendulum model [see eqs. (BI6) and (BI7) Appendix B].

j"



Figure 19. Leg Motion 
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The disturbing forces are computed by substituting the leg profiles,

given in fig. 20, in these equations. The upper leg segment profile shown in

fig. 20 indicates a deceleration/acceleration motion in the middle of the leg

segment motion. The calculation of the forces for the leg segment motion

using the profile of fig. 20 is laborious. Hence, a simpler leg segment pro-

file will be used to illustrate the magnitude of the forces. This profile is
derived as follows:

(I) Upper Leg

@LLU -- 3.84 rad/sec Z for 0-< t _ 0.5 sec

(z)

@LLU = -3.84 rad/sec 2 for 0.5 < t -< I. 0 sec

Lower Leg

"@LLL = -Z.97 rad/sec 2 for 0 <- t <-0.45 sec

@LLL = +Z.97 rad/sec Z for 0.45 < t -<0.9 sec

This profile is used in the force equations for the leg motion that follow.

F = 1.06 "" cos @ • Z
x (@LLU LLU - @LLU sin @LLU )

.. • 2.

+ 0.281 (@LLL cos @LLL - @LLL sin @LLL ) (6)

°

F = 1.06 (@ sin + @ Z
y LLU @LLU LLU cos @LLU )

.. . 2.

+ 0. Z81 (@LLL sin @LLL + OLLL cos @LLL ) (7)

(The numerical constants represent the leg parameters obtained from the

MAID Program generated by NASA and are given in Appendix D. )

The results of these equations and assumed leg profiles yield x and y

components of force of approximately 5 ib each. The forces exerted by

Subject B, fig. Z2, are I and 4 Ib for the x and y axes, respectively. Here

again, the x-axis force is low compared to the predicted value.

The equations derived for the test data of the leg motion are given in

Appendix C.
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LOCOMOT ION

Locomotion may be conveniently devided into two classes: (i) guided
motion and (Z) free soaring. Guided motion is the translation of the body
utilizing either continuous or intermittent contact with the vehicle for pur-
poses of controlling body attitude and velocity. The types of guided motion
simulated during this study include: (1) velcro walking, (2) compression
walking, and (3) guided soaring. Free soaring is the translation of the body
in which no contact is made with the laboratory, except at initiation and
termination of motion.

The disturbance profiles for the velcro walking, compression walking,
and free soaringare referenced to the coordinate system shown in fig. 4.
The guided soaring perpendicular to the platform disturbance profile is
referenced to the coordinate system of fig. 6. Guided soaring parallel to
the platform is referenced to the coordinate system of fig. 5.

For the guided locomotion, it should be noted, the force parallel to the
direction of movement contains two error sources: (1) the component of
gravity induced when the subject moves from static pendulous support posi-
tion and (2) the rotation of the subject when linear motion is terminated. For
each foot of displacement of the subject from the static pendulous position,
a bias force of 3. 2 Ib will be present in the direction of motion, on the basis
of the 54-ft pendulum length. In one particular test of the guided locomotion,
the subject translated at least Z ft from the static pendulous position which
would produce an approximate 6. 5 Ib bias in the direction of motion. When
the subject terminates the linear translation, a body rotation is induced.
The amount of rotation depends on the location of the subject's center of mass
with respect to the locomotion surface and the level of intensity or speed of
translation. Individual locomotion simulation and test results are described
in the following paragraphs.

Velcro Walking

To enable a person to walk in a zero-g field, an adehesive material
could be used on shoes and walking surface. Such a material is velcro. To
perform the velcro walk, the subject plants both feet firmly on the velcro
walk strip, grasps the hand rail with his right hand, moves his left foot by
rotating around the ball of the foot, and then lifts the foot free of the velcro.
He then advances the left foot approximately 8 in. , moving forward in the
plus-x direction, and repeats the process with the right foot. Velcro walking
is done at three levels of intensity: minimum, nominal, and maximum. For
the minimum level, the subject does not use the hand rail.



Fig. Z3 is a multiple exposure photograph of the velcro walk at a nomi-
nal rate.

Figs. Z4, 25 and Z6 present the Euler angles for the various body seg-

ments and the in-plane translation of the head for the velcro walk. From

fig. Z4 there was practically no rotation of the torso and left arm. The sub-

ject held his left arm to his side. Fig. Z5 shows the motion of the right arm

which the subject used to grasp the handrail. Fig. 26 indicates that the sub-

ject took approximately a Z0-in. step in approximately Z sec.

Fig. Z7 shows the force profiles for Subject A in performing the nominal

velcro walk. The initial positive force F. , is produced as the foot is pulled

to free it from the velcro. Freeing of they foot from the velcro takes a maxi-

mum force of 3 Ib in this case. After the foot is free from the velcro, which

takes approximately 0. Z sec, the leg is moved in a normal stepping manner.

This leg motion produces the first negative peak in Fy and the second of suc-

ceeding positive peak. The same wave form is noted for the leg motion as

was shown in fig. ZI. The high frequency, or spiking, negative peak,

approximately I.Z sec, is caused by the impacting of the foot on the velcro

strip to complete the first step. The leg motion of the right foot then starts

with the next negative peak and is completed in approximately 1.8 sec. The

data indicate that the right foot was set down on the platform with the utmost

of ease at the completion of the step.

The maximum y component of force is approximately 15 ib for the

nominal velcro walk.

During the walking motion, the x component of force is almost always

negative. Initially, the right foot pushes back (-x direction) for approximately

I. 0 sec. At approximately 1.3 sec, the left foot is then pushing back. Also

during this time the right hand, by grasping the rail, is applying a negative

F x force. The curve for the x component of force is biased and, therefore,

the integral of the force is not zero at the termination of the motion. As

previously mentioned, this is the result of the gravity component induced
from the translation and the residual rotation of the body at the completion

of the movement.

In these guided motion tests an attempt was made to center the subject's

translation with respect to the force balance. That is, if the subject trans-

lates Z ft along the platform, the starting position is 1 ft aft of the force

balance, assuming the static position of the subject performing the motion is

centered over the force balance. This would induce a positive force of

approximately 3. 2 ib in the x direction {parallel to the platform) at the start
of the test. Because the force balance is zeroed and calibrated at the start

of each test series, the reading of the x component of the force balance has

a negative initial error of 3. Z lb. If the subject performs the locomotion

centered over the force balance, then the following procedure may be used

to correct the x component of force. With the starting position of the pen-

dulum support deflected away from the static position, the gravity component

of force in the plus-x direction is expressed as -W sin 8/L. The amplitude,

W, is the suspended weight, L the length of the pendulum arm (54 ft), and
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is the x-axis displacement in feet from the center of the force balance.

Because the force balance is zeroed at the beginning of the test, the error

component becomes W sin _/L. (The sign of 8 is obtained from the direction

of displacement along the x axis. ) This curve represents the abcissa of the

line of zero force for negating the gravity component when superimposed on

the plotted data for the x component of force. In superimposing this zero-

force curve on the plot, the integral of the x component of force will be more

nearly zero. If the initial and final positions with respect to the force

balance are known, the effect of the gravity component can be removed.

These positions were not noted during the guided locomotion tests and there-
fore the data were not corrected.

The forces produced by Subject B in performing the velcro walk are

shown in fig. 28. Subject B stepped quicker and, consequently, harder than

Subject A for the nominal case. The maximum y component of force is 28 Ib,

which occurred at the time of impact of the right foot, approximately 1.4 sec.

Subject B took approximately 9 Ib to free his left foot {first positive peak)

from the velcro. The left foot impact is near 0. 9 sec.

Figures 29 and 30 show the minimum level of velcro walking for Subjects

A and B, respectively. It took Subject A 0.6 sec longer to complete the walk

than Subject B. The leg motion forces produced by Subject A are only about

half those produced by Subject B. The impact forces of the steps, occurring

approximately i. 4 and i. 9 sec after first motion for Subject A and 0. 25 and

i. 4 sec after first motion for Subject B, are approximately equal, i0 lb.

In performing the minimum velcro walk, the hand rail was not used.

This constrained the subject's walk to a small step. Any movement in the

x direction of the total center of mass of the body produces a restoring

force, thereby limiting the subject's step. {This is the pendulum action of

the counterbalance system.) To perform the velcro walk without the use of

hand holds in a true zero-g environment, a moment must be produced by the

flexture of the ankle so that the body rotates in the direction of the walk.

This compensates for the tendency of the torso to move in a direction opposite

to the direction of motion. The ease of performance of the walk is deter-

mined by the moment the astronaut can induce by flexing his ankle.

The transmissibility of this moment to the spacecraft is determined by

the construction of the shoes. The shoes must have a rigid sole such that
the heel cannot be peeled off, but must be lifted from the velcro walk. This

will provide the maximum moment transmissibility to the walking strip.

Even with the astronaut wearing a shoe of optimum design, this induced

moment appears to be so small that velcro walking without the use of a hand

hold will be laborious, if not impossible. The errors introduced by the

pendulum length, location of the walking surface, etc. , limit the feasibility
of the velcro walking simulation.

Figs. 31 and 32 show the disturbances for Subjects A and B, respec-

tively, performing the maximum velcro walk. Subject A produced forces of

50 Ib in the x and y components, while Subject B produced 32 ib of force in

these components. Here again, the curve of F x should be modified in the

manner previously outlined for a more realistic force profile.
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During this maximum condition, the maximum suspension force, F z, was

11% of Subject A's weight and 20% of Subject B's weight. In all the tests that

involved translations in x and/or y, these relatively high suspension forces

were present. These forces are caused by the out-of-plane motion by the

subject and the pendulum action of the suspension system. These out-of-

plane motions by the subject can be induced by an initial tilting of the subject

out of the horizontal plane; therefore, the subject's feet are higher or lower

than his head. During the testing, such tilting was carefully minimized. In

some cases tilting probably was induced by the subject after the motion was

started. The force data F x and Fy, presented for these tests, might be 15%

greater in amplitude to account for the out-of-plane motion. The general

shape of the curves would not be affected. These forces are large enough in

magnitude so that the moment data resulting from body segment angular

accelerations are negligible.

T_e equations of the forces for the velcro walking are given in Appen-

dix C. The terms of the Fourier series are evaluated and plotted in fig. 32

for the maximum velcro walking of Subject B. The higher frequency terms

present in the F x and Fy data were not reproduced, as shown in fig. 32.

°

Free Soaring

In performing free soaring locomotion, the subject in the standing position

pushes off from the platform by flexing the left foot, traveling in the plus y

direction {note fig. 4). This is done at three levels of intensity: (I) mini-

mum, (2) nominal, and (3) maximum. For the minimum and nominal levels,

a bounce board is positioned over the subject's head and attached to the force

platform by means of a bar. After the subject pushes off the force platform,

he impacts on the bounce board with his hands and then pushes off to return

to the platform. The maximum level of intensity is attained by the subject

being in a crouched position and then flexing both legs as rapidly as possible.
This is done without the bounce board attached.

Fig. 33 is a plot of the downward force, F. , for the three levels of

intensity of the free soaring for Subject A. In {he nominal case, the push off

with the left leg takes place over the first 0. 35 sec and produces a normal

force on the platform of 92 lb. The second peaking, between 0. 5 sec and

I. 0 sec, occurs when the subject impacts on the bounce board with his hands.

The area under this portion of the curve, which represents linear impulse,

is greater than the pushoff impulse because it represents the impact and a

return pushoff to the platform. The forces transmitted to the x and z axes

for this motion are 7_0 and 10% of the y axis, respectively. These small

misalignment forces are omitted because they do not affect the test. The

total time of the impulse obtained with the leg for the nominal case is

0.35 sec. Integrating the pushoff force curve gives approximately 15. 5

Ib-sec of impulse, which results in a soaring velocity of approximately

3 ft/sec for this 175-1b subject.
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In the minimum case, the maximum force is approximately 3Z ib with a

total time of application of approximately 0.55 sec. The shape of this force

curve is quite different than the nominal or maximum case. Again, the
forces transmitted to the x and z axes were small and therefore omitted.

Also, the impact on the bounce board is omitted because it is not significant.

The subjects had some assistance in performing the maximum case of

free soaring. They grasped the full-length body exercise supporting rod for

stability prior to first movement. This, in effect, spring loads the subject

and accordingly permits a maximum force level to be exerted on the plat-

form. In the maximum case, a peak of 350 ib was produced in the free

so._.rin_g ewercise. The total impulse, which is the area under the curve, is

4Z ib-sec. In defining the MORE attitude hold capability, the case of a six-

slug crew member soaring at 5 ft/sec was used. This yields an impulse of

30 Ib-sec, which is about 78_0 lower than the impulse obtained by the per-

formance of Subject A. The soaring velocity obtained by Subject A, who

weighs 175 lb, is computed as 7. 7 ft/sec.

Fig. 34 shows the force curves of Subject B free soaring at the three

levels of intensity. The main point of interest is that Subject B was only

able to exert 5670 of the force that Subject A produced.

All of the free soaring tests performed gave very smooth curves for the

Fy-force component. Also, the shorter the time of application, the higher
was the force exerted.

The equations for these forces are given in Appendix C.

Compression Walking

For the compression walking, an overhead bounce board is attached to

the platform. The subject then walks, using the hand and foot pressure on

the bounce board and force platform, respectively. The compression walking

is done at three levels of intensity: (1) nominal, (Z) minimum, and

(3) maximum.

The nominal case of compression walking is presented in figs. 35 and 36

for Subjects A and B, respectively. In both cases, the force transmitted to

the x axis is small compared to the normal component, Fy, of force. In

comparing the y-axis force profiles, there is a marked difference between

Subjects A and B. Subject A appears to have a much smoother walking

ability than Subject B. Subject B produced impulse forces up to 50 Ib, while

Subject A produced results of 24 lb. It appears that Subject A pushed down

with his foot and up with his hand about the same time, thus minimizing the

y-axis force transmitted. From the total time of the walking, both subjects

performed at about the same rate.

Noting the plot for Subject B, the y-axis force has the same similar

characteristics as noted in the velcro walking exercises. The first negative

and positive peaks (one cycle) are produced in raising the leg. (Breaking

loose of the foot from the velcro is not apparent because of the scale. ) The



next negative and positive peaks are caused by lowering the leg. The large
negative pulse is then the foot impacting on the platform, 0.5Z sec. From
this time on, two body segment motions take place. These are the arm
repositioning for the movement of the hand on the bounce board and the
raising of the right leg. The right foot then impacts at i. 0 sec.

The minimum levels of compression walking are shown in fgs. 37 and 38
for Subject A and B, respectively. In both cases for the minimum exercise,
the x component of force shows the bias effect produced by the pendulum
support. Again, Subject A has a smoother walk. However, he produces the
largest impact force, approximately 14 ib compared to the ll-lb maximum
produced by Subject B. In comparing the nominal and the minimum cases,
the disturbances resulting from compression walking, namely Fy, can be
reduced by at least half by walking slower and smoother.

The maximum intensity of compression walking is shown in figs. 39
and 40. The peak y-component force impulses are noted to be 74 ib at
0. 74 sec and 46 ib at 0. 66 sec for Subjects A and B, respectively.

The equations of the forces are given in Appendix C for the three
intensity levels.

Locomotion Normal to the Force Table

During this test, the subject is oriented as shown in fig. 6. The subject
grasps the locomotion rod with both hands, keeping the rod perpendicular to
and ]2 in. from his chest. The subject translates by releasing the rod with
the right hand and then moving the right hand a comfortable distance from
the body, grasping the rod at the termination of the movement. The left
hand is then released and moved a comfortable distance toward the right
hand. This locomotion is in the plus-y direction. This type of locomotion
is performed at three levels of intensity: (I) nominal, (2) minimum, and
(3) maximum.

Figs. 41 and 42 show the nominal level of disturbance for Subjects A
and B. For this particular locomotion, the subject's translation motion is
in the y direction. Hence, the same pendulum effect will be present in the
plot of the y component of force as was present in the x component of force
of the walking tests. To remove the gravity component of force and account
for the zeroing of the force balance at the start of the test, the curve of
W sin 6/L is again used to describe the zero-force line for the y component
of force. The derivation of this curve is given in the velcro walk motion.
This assumes that the starting and terminating positions for the motion are
equal in deflection from the static position of the pendulum. If this is not
the case, then the curve of the zero-force line can be modified to satisfy the

conditions.

In modifying the y component of force by the equation for the zero-force

curve, W sin 6/L, the y component of force would be initially negative, which

indicates an acceleration of the subject away from the force table. The y

force would then decrease to zero (the subject stops accelerating) and

continue to increase in the positive direction. The positive direction indi-

cates a deceleration of the subject to terminate his movement.
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The x component of force is produced by a small swaying, or body

rotation, about the z axis as the subject moved along the bar. The flexing

of the bar is also contained in the x component of force.

The movement of Subject B (fig. 4Z) was not as smooth as that of

Subject A. This is illustrated by the higher frequency component in the

force data for Subject B. The x component for Subject B is approximately

twice the magnitude, 12 ib, as that for Subject A.

The minimum level of intensity of this locomotion is shown in figs. 43

and 44 for Subjects A and B, respectively. Again, Subject A exhibited a

--'_'_.... _ by _h_ fairly smooth plot of F_r. The mag-smooth movement, as =v,_,_ ....... .

nitude of forces obtained for the minimum level are nearly theJsame as those

shown for the nominal level. The time to complete the motion for the mini-

mum case is approximately 0. 7 sec longer than the nominal case. Again,

the error source caused by the gravity component is quite predominate in

the y component of force.

Subject B again performed in the same manner for the minimum case as

he did in the nominal case. The disturbances he induced were somewhat less

than the nominal case.

The maximum level of intensity for the motion is shown in figs. 45

and 46. The forces that both subjects produced are twice as large as those
in the nominal case.

The equations derived for these disturbances of the locomotion normal

to the force table are given in Appendix C.

°.

Locomotion Parallel to the Force Table

The guided locomotion parallel to the force table is performed by the

subject initially grasping the locomotion bar with both hands, the right hand

18 in. forward of the left hand. The subject translates by releasing the bar

with the left hand and moving the left hand a comfortable distance forward

of the right hand, grasping the bar at the termination of the movement. Then

the right hand is released and moved a comfortable distance forward of the

left hand. This locomotion is performed in the plus-x direction (see fig. 5).

As in all the locomotion tests, this one is also performed at the nominal,

minimum, and maximum levels of intensity.

Fig. 47 is a multiple-exposure photograph of the locomotion parallel to
the force table.

Fig. 48 is a time history of the Euler angles describing the various body

segment motions for this locomotion test. These plots show that the legs

were held together with no bending at the knees. During the last second of

the motion, the legs were held fairly rigid to the torso. The variation of the

torso angle is approximately 14 ° during this motion. Because the arms are

used as the source of locomotion, there is a large variation in the Euler

angles describing their relative position.
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Fig. 49 is the time history of the linear displacement of the subject for

this locomotion. The subject translated nearly 4 ft parallel to the platform,

keeping his head at a nearly constant distance away from it. The velocity of

the motion is obtained by computing the slope of the x displacement, which

is found to be approximately Z. 5 ft/sec and is fairly constant throughout most

of the test. The subject here performs a smooth motion for this locomotion
test.

The nominal level of intensity is shown in figs. 50 and 51 for Subjects A

and B, respectively. In this locomotion test, as in velcro walking, the x

component of force contains the gravity component of the pendulum support.

It was pointed out previously that for equal deflections about the static posi-

tion of She pendulum support, the component of force resulting from gravity

can be eliminated by superimposing the curve of W sin 8/L for the line of

zero force of the x component of force. In both figs. 50 and 51, the peak x

components of force occur within 0. 3 sec of the initial movement. Because

the subject's velocity is approximately 2. 5 ft/sec, as obtained from fig. 49,

the total movement during 0. 3 sec is 0. 75 ft. For the pendulum support

length of 54 ft, this 0. 75-ft deflection produces a Z. 3-1b error in the x com-

ponent of force. Noting fig. 50, this amounts to an error of approximately

11% for the peak x component of force. Hence, the maximum amplitudes of

the x component of force, which is the acceleration force, is reasonably

close, but its profile needs modifying to remove gravity effects.



As in the previous locomotion test, Subject A had a smoother motion.
The maximum y component of force Subject A produced is only 3 Ib, com-
pared to 10 Ib produced by Subject B. The motions for the two subjects are
within 0. 1 sec of each other.

From figs. 52 and 53 for the minimum level of intensity, Subject A was
slow, 2. Z sec, compared to the time of Subject B, 1.8 sec. The magnitude
of the x component of force in both cases is roughly the same. Also, they
are somewhat less than those shown in the nominal case.

For the maximum intensity level shown in fig. 54, Subject A exerted a
large pulling forcc, Fx, of 66 IN. This peak is fairly close to the starting
time as it was for the nominal case of this locomotion. Hence, the peak
magnitude is within 10g0of the value indicated. Subject B, fig. 55, shows
similar characteristics with a somewhat smaller pulling force, 50 lb.

The equations derived for these tests are given in Appendix C.
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Figure 47. Locomotion Parallel t o  Force Table 
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CONSOLE OPERATION

Three typical console operations were simulated during this experiment:
(1) turning a hand wheel, (2) operation of sliding controls, and (3) a push-
pull or phone-jack operation. A more detailed list of console operations was
not considered because the disturbance profiles are generated primarily by
the body segment traveling to and from the console. The actual console
operation imparts a disturbance which represents the relative ease with

which the operation is performed. For properly designed consoles, this
disturbance will be negligible.

The console operation is performed with only one restraint configuration.
In this configuration, the crew member is standing at the console with his
feet attached to the floor byvelcro strips. Awaist restraint, in the form of
a belt with a bar attached to each side of the belt and connecting to the
console, holds the operator at a comfortable distance for console operation.

The console operation disturbance profiles are referenced to the coordi-
nate system shown in fig. 5.

A description of each individual console operation simulation and test

results are presented in the following paragraphs. Each type of console
operation is performed at three levels of intensity: (1) nominal, (2) minimum,
and (3) maximum.

Console Operation Torquing

Console operation torquing is a crew motion similar to the arm swing
motion previously discussed. The subject initially has both hands resting on
his thighs. He moves his left hand to the control console wheel. The subject
grasps the wheel and rotates it 360 ° clockwise, then releases the wheel, and

returns his hand to the original position.

Fig. 56 is a multiple exposure photograph of Subject B performing the
nominal torquing console operation.

The Euler angle description for the various body segments performing

this console operation is presented in fig. 57. Only the upper, OLA U, and

lower, OLAL, arm motions are plotted because the remaining boa-_ segments

were partially motionless. The Euler angle, _bLAL, about the x axis shown

in this figure is the result predicted on the basis of body segment length,

diameter of the torquing wheel, and time required to rotate the wheel 360 °.



I 

Figure 56. Console Operation Torquing 
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The nominal level for the console operation is shown in figs. 58 and 59.

Noting fig. 58 for Subject A, the first 0. 7 sec are caused by the arm motion

in moving up to the console. The x component of force here corresponds to

the y component of force shown in fig. 8 for the arm motion, which is the

result of reorientation of the man with respect to the force platform. For the

console operation tests, both the x and y components of force have approxi-

mately equal transmission ability. This is caused by the restraint configura-

tion which stops the operator from rotating. From 0. 7 sec to approximately

I. 9 sec, the particular console operation, torquing in this case, takes place.

From i. 9 sec to termination is the disturbance resulting from lowering of the

arm at the side. Maximum forces for Subject A are 2.6 ib and 4 ib for the

....... _"_^_+ producedx and y components, respectively, in tne sanie _, _,u_j_ B

forces of 3. 6 ib and 3 ib for the x and y axes, respectively.

The minimum intensity for this test is shown in figs. 60 and 61 for

Subjects A and B. Here, the force levels are approximately the same as in

the nominal case. The force profiles are smoother because the subjects

were instructed to make their motions as smooth as possible.

Figs. 62, 63, and 64 show the disturbance profiles for the maximum

intensity of Subjects A and B. The maximum forces and moments for both

subjects are nearly the same, the maximum force being about 7 ib for the

y axis with a maximum moment of 35 ib-ft for the z axis. It should be noted

that these moments are dependent upon the geometry of the console with

respect to the force balance.

The equations derived for the forces are given in Appendix C.

Push-Pull Console Operation

The push-pull console operation is a test designed to simulate the crew

member of a spacecraft inserting the intercom phone jack into a wall recep-

tacle. Initially, the subject has both hands resting on his thighs with the left

hand holding the phone jack. He moves the left hand toward the wall recep-

tacle and inserts the phone jack. The phone jack is then removed and the

hand returned to the initial position, resting on the thigh.

Figs. 65 and 66 show the nominal case of the push-pull operation for

Subjects A and B. The first 0.5 sec is the disturbance from the arm motion

swinging up. The same disturbance profile as in the previous console opera-

tion is noted for the x axis. Also, the force magnitudes are approximately

the same. The phone jack is inserted at I. 3 sec for Subject A and 1.2 sec

for Subject B, as can be seen in the spiked characteristic of the y component

of force. For this test, the actual console operation produces a larger

disturbance than the arm motion.

Figs. 67 and 68 show the minimum level of intensity for the push-pull

operation. Again, the prominent spike characteristics of the y component

of force are the times which the phone jack was inserted and removed. The

force produced by the arm motion is less than that illustrated in the nominal

case.

93



9,4

/
)

)

(
/

(

\

J
/

J

)
..Y

(ql) X.=l

\

J
(-

)

J

/

.)
J

/

\
(ql) X_.-I

..-4

,==:;

o

r,,_)

I

r,.,P)

E

E

°_

...&
¢.,¢)

r_

O
°_

O

e-,,-
o

r...:

1.1_



\

J

(

(

J

_ fJ

J

t
"-'p

,-,,,

(

-,,,,
)

(
f

_f
f

-.....,.

)
tB

I

m
om

C)

I:1_

e-,,-

o_

E

I:=

9.

i

¢,,¢_

0

o

Q

e-,,,

0

°_

(ql)xj (ql)XJ



)

J

)

)
I

I I

(ql)x_-I

C"
)

J
(

,,...

I
f

(ql) '_..-I

,::::;

o

c_

o

I

96

L



>
(

\

)

)

! I

(ql) X=l

,m=_Bmmml _ _

I
I ",,.

i

'(
I

i j
J

I

,\I
I

J

..___._._..-.. J

o

p

o

s=:

I-

o

'=R.

"T I>

(ql) '_.=1

130

°_

I

°n

G,_

°_

E

E
°_

X

0

0
.m

C)

0

0

o_

97



<

¢,

.D

<

\
b

J

S

<
\>

J
"7 7 7

c._ _

f
I

"7

(ql) X=l (ql) '_-I

7 7

c:_

o

o

o

"T

I--

I

m
.m

0

I::1_

._

E
0

Z

0
._

0

0

0

9B



k

I

/..

..._)
f

J

<
(

f

\

....._..._

(.
)

/
o V T T

(qt) ×J

_ ._..___

(Z
I'

<

J

ao

/

)

/
N
'=5

(ql) __-I

I.--

mm

I

n
.m
1.1-..
0

n

--,i

E
0

Z

._

,m-.

0

c_

0

I.I..



100

_D

\

/
,F i

f

(ql) X=l

'T <7 <7

(

)

f

\

,..=t-

I,-.-

o

,=;

,=;

(ql) _

I

,i

O

I:1_

t,,,f)
o_

E

E
°_

°_

°_

._J

O
°_

O

O

¢--

o_

I_1_



/

'x
\

J

(

J
\

/

/

r

)

7 q'

(ql) x3

J
)

\

/
(

I

(

\

/

<

"x

/

(ql) '_3

V 7 7

Lz_

c_

c-J

c_

2

_o

.-J

.-z

co

c5

c5

Z

¢-J

_5

t.t.t

e_

I

n

D_

G_

¢.-

E

E
¢.-

t--

c--

.D

o

Q

¢-.

¢.D

G_
L..

b_

lOl



N

.4

I.l..

i

Figure 75.

10

5

-5

-E

/

15

-1_

2O

10

0

-10

-20

30

\

20

10

0

-10

-2O

\
L

-3O 0

/
/ W

0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

Console Operation Maximum Disturbance Profile Lateral Sliding - Subject A

1.4

102



,..,7

(ql) x-I

\
I

f

(

J

\
/

f

/

(ql) _-I

)

\

p

o

"...£

o o .o

'-7 -

k

1
c5

, ( ._

j /,°
d
1 '='

i k,, o
o

o "7'

(qI-B) x_ (ql'_.J)Zlt',l

1313

I

m
.m

O

13._

-'-,i

E

E
X

°__

O

o

O

O

u::;

o__

II



Figs. 69 and 70 are for the maximum level of intensity. The maximum

y axis forces produced are 9. 6 ib and 8. 6 ib for Subjects A and B,

respectively.

Console Operation Sliding

The sliding console operation simulation is similar to the torquing opera-

tion. The subject initially has both hands resting on his thighs. He moves

his left hand to the slide-bar handle. The subject grasps the handle and

moves it first to the left as far as possible and then returns the handle to the

original position. The handle is then released, and the subject returns his

hand to the original position.

The nominal case is shown in figs. 71 and 72 for Subjects A and B,

respectively. The force levels are compatible with the previous console

operations. Subject A appears to be somewhat more facile in the console

operation than Subject B.

The minimum case is shown in figs. 73 and 74. Again, there is very

little difference between the magnitude of the forces for the nominal and

minimum cases. The maximum force in the x and y axes for both cases is

approximately 3 lb.

Figs. 75 and 76 illustrate the disturbances for the maximum intensity of

the console sliding operation. The moment components, x and z, are given

for this case along with the usual x and y forces. Again, Subject A is quite

active and produces forces of 16 Ib and moments of 29 ib-ft, while Subject B

produces forces of II ib and moments of ii ib-ft. Subject A performed the

console operation in 0. 4 sec less time than Subject B; hence, higher magni-

tudes of disturbances are to be expected.
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CREW MOTION EXERCISES

Physical conditioning of the spacecraft crew is recognized as a primary

requirement whenever extended periods of weightlessness are experienced.

Accordingly, crew exercise activities are considered a major source of

disturbance during _ _nission. The crew exercises simulated during this

study include: (I) trunk bending exercise, (2) neck bending exercise, (3) row-

ing exercise, (4) pedal ergometer endurance exercise, (5) oscillating

acceleration exercise, (6) full length body exercise, and (7) trunk rotation

exercise. Each of these exercises has disturbance profiles which are refer-

enced to the coordinate system shown in fig. 4. The test results for the

crew exercise are discussed in the following paragraphs.

Trunk Bending Exercise

For the trunk bending exercise, the subject is in a standing position with

his hands above his head. He then bends at the waist until his hands grasp

the ankles, pulling his head toward his knees. This body segment motion is

performed in the x-y plane (see fig. 4).

This exercise is similar to the waist bending motion, the only difference

being that in the trunk bending exercise the hands are above the head and the

torso is rotated through a greater angle. Hence_ it is expected that the

forces produced from the exercise will be larger than those of the waist

bending motion.

Fig. 77 is a plot of the x and y forces for Subject A in performing the

trunk bending exercise. The general shape of the curve of Fy is similar to

that shown for the waist bending (fig. 17). The peak values of the x and y

components of force are 16 Ib and 44 ib, respectively, for the trunk bending

exercise. Again, the x component is small because the upper and lower

torso rotate in opposite directions. This exercise required i. 1 sec.

Fig. 78 shows the result of Subject B performing the trunk bending

exercise. The maximum y-component force is approximately 16 Ib, nearly

a factor of three less than that of Subject A. The magnitude of F v was

roughly the same for all three cases that Subject B performed. St is noted

that Subject B performed the exercise in 0.9 sec, compared to i. 1 sec for

Subject A. Both subjects rotate the upper torso through the same angle.

Hence, the most likely possibility of Subject B producing less disturbance is

that he bent his knees while performing the exercise. From the area under

the y component of force, it appears that Subject B motion was influenced by

the gravity component of the pendulum support.
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The equations derived for the forces are presented in Appendix C. The

x component is omitted because it is small.

Neck Bending Exercise

For this exercise the helmet is removed from the subject. A head strap

with a dynamometer attached is used. The free end of the dynamometer is

grasped with the right hand fully extended. The exercise then consists of

pulling the head against the constraining dynamometer.

No attempt was made to predict the disturbances resulting from this

exercise. The dynamic description is dependent upon body muscles and not

free swinging body segments.

The forces caused by this exercise are shown in figs. 79 and 80 for

Subjects A and B, respectively. The body motion for this exercise is very

small. Hence, it is not known whether the biasing of the y component of

force for Subject A results from the pendulous gravity component. The

forces exerted in either case are approximately 2 lb. Subject B appears to

have a smoother action than that of Subject A.

The equations derived for the forces are presented in Appendix C.

Rowing Exercise

For this exercise, one end of the dynamometer is fastened to the left

foot and the other end is grasped with the left hand. The dynamometer is

pulled and the shoulder is rotated clockwise in the x-y plane. This exercise

depicts a rowing motion.

The disturbances for Subjects A and B are shown in figs. 81 and 82,

respectively. For Subject A, the maximum y component of force is approxi-

mately 13 Ib, with a cyclic nature. The fundamental period is approximately

0.8 sec. Subject B exhibited ahigher force, Fy, of Z6 ib, with a shorter
fundamental period.

Only the equation for the y component of force is presented in Appendix C

because the x component is small.

Pedal Ergometer Endurance Exercise

For this exercise, the pedal ergometer is attached to the platform such

that the pedaling motion is performed in the x-y plane. For the start of the

test, the subject is pedaling at approximately 60 rpm with a load of 150 W.

The disturbance profile for the acceleration to 60 rpm is not available.

Fig. 83 is a multiple-exposure photograph of Subject B performing the

pedal ergometer exercise. Fig. 84 is a time history of the various body seg-

ment Euler angles. The torso and the arms remained nearly motionless

while Subject B performed this exercise.
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Figure 83. Pedal Ergometer Exercise 
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Figs. 85 and 86 show the disturbances of the pedal ergometer exercise

for Subjects A and B, respectively. Because the subjects were pedaling at

approximately 60 rpm at the start of the test, the bias forces and moments

were not obtained. Only the relative difference between the peaks of the force

and moment components are representative for this disturbance. The forces

and moments must integrate to zero over one full pedaling cycle because over

one full cycle all body segments are at the same location as at the start of the

cycle. Hence, the force and moment scales should be moved up or down to

give equal areas on either side of the zero coordinate. In comparing figs. 85

and 86, Subject B performed a much smoother ride than Subject A. Both

subjects induced approximately the same magnitude of disturbance.

The equations for the curves are presented in Appendix (5.

Oscillating Acceleration Exercise

To perform the oscillating acceleration exercise, the subject springs off

the force platform in the plus-y direction by straightening his legs, as in the

free soaring. With his arms extended, he cushions the impact at the bounce

board with his hands and pushes off the board to return to the force platform.

Fig. 87 is a multiple-exposure photograph of Subject A performing the

oscillating acceleration exercise.

The body segment Euler angles for Subject A in performing the exercise

are shown in fig. 88. This exercise required approximately 2.2 sec to com-

plete. It should be noted that the subject's torso remained nearIy erect

throughout the exercise. Fig. 89 shows the displacement of the subject's

head when performing the exercise. The y displacement is the vertical

motion, which shows a maximum excursion of 41 in. The x displacement

shows the distance the subject moved forward at the completion of the test.

Fig. 90 is a plot of the y component of force Subject A exerted while

performing this exercise. The initial negative peak is produced when the

subject pushes off the platform. The magnitude and time history of Fy is
very similar to the nominal free soaring disturbance shown in fig. 33. This

is to be expected, because the first part of these two tests is identical. The

impact on the bounce board occurs approximately 0.57 sec after first motion,

as shown in fig. 90. From this time until approximately 1.2 sec, the subject

cushions his impact with his hands and then pushes off to return to the plat-

form. The reason that the area under the positive force curve, or impulse,

is greater than that for the negative force curve is that the subject reduces

his initial velocity to zero (the velocity attained from pushing off the platform

with his legs) and adds a velocity from pushing with his hands to return to the

force platform. The peak forces exerted by the legs and arms are 85 and

106 lb, respectively.

The performance of Subject B is shown in fig. 91. The y component of

force for both subjects is very similar. The major difference is that

Subject B exerted more force with his legs than his arms. The x component

of force is small compared to the y component.

The equations for the disturbances are presented in Appendix C.
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Full-Length Body Exercise

To perform the full-length body exercise, the subject places both feet in

a foot-restraint assembly fixed to the platform. The exercise apparatus

consists of a rod mounted on the platform parallel to the subject's longitudinal

axis. A pair of handlebars attach to the rod so that they slide up and down it.

Fixed to the handlebars are negator springs which require a force of 22 to

25 ib to slide the bars up the rod. The subject, in a crouching position,

grasps the handlebars near the platform and moves them to the highest posi-

tion in the plus-y direction, at which point he is in an erect position with the

handlebars slightly above his head. The subject then returns to the crouching

position with the handlebars.

The disturbances produced from the full-length body exercise for

Subjects A and B are shown in figs. 92 and 93. In both figures, the initial

negative portion of the y-axis force is produced as the subject accelerates

from a crouched to an upright position. When Fy becomes positive, the
subject is decelerating in a nearly upright position. The spike at approxi-

mately I. 4 sec of the Fy curve most likely is the result of the impact force

of the handlebars reaching the mechanical limit on the rod. This limit is also

noted in the moment plot for the z axis.
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The subject then accelerates from the standing position to a crouched

position. The least negative portion of the curve indicates his deceleration

in the crouching position. Total time required to perform this exercise is

approximately Z. 8 sec for both subjects. The moments about the x and y

axis were small compared to the moments about the z axis; hence, they were

omitted. This type of exercise can produce disturbing forces of 50 to 60 Ib

and moments of I00 Ib-ft.

The equations for these disturbances are given in Appendix C.

To perform this exercise, the subject places both feet in the foot

restraint and grasps a longitudinal supporting bar from behind with both

hands. The upper torso is then rotated in the x-z plane, first to the left,

then to the right, and then returns to the starting position.

Figs. 94 and 95 show the disturbance for Subject A. This exercise is

best depicted by the moment component, My. This component is fairly

sinusoidal with nearly equal amplitudas. The initial negative value indicates

a clockwise twisting of the torso. When the torso is completely turned to the

left, the moment My is near its extreme negative peak, -52 Ib-ft. This

moment is primarily dependent upon the constraints of the arms behind the

back grasping the bar and not the angular acceleration of the torso. As the

torso twists to the right, the moment decreases. The moment goes to zero

when the torso returns to the initial position. The positive portion of the

moment is analogous to the negative side, only the torso is twisted to the

right and then back. Forces noted for this subject's performance are compli-

cated by the restraining geometry of the subject. Any type of twisting motion

about the y axis contains the larger error source of the suspension system.

The performance of Subject B for this exercise is shown in figs. 96

and 97. Here again, the moment My best describes the test.

The equations for these disturbances are given in Appendix C.
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CONCLUSIONS

The disturbance profile of routine crew motions is one of the major

disturbances acting on a space station. For a control system designed to

evaluate the attitude hold and rate stabilization capability of the spacecraft,

a complete knowledge of the dis'_ur'oance_- i_ust be u-_-:-^___, m_;_,_oreport

provides a catalog of some of the crew motion disturbance profiles to be

expected. Conclusions reached during this study are in the following general

areas: (1) cyclic nature of the disturbance, (Z) minimum disturbance thres-

hold level attainable, (3) the transmissibility of certain components of force,

(4) velcro walking feasibility, (5) effect on the MORL, and (6) performance

of the simulation technique.

A majority of the tests indicate that the predominate frequency of the

disturbances is in the range of l to Z cps. To reduce the effect of these

disturbances on a spacecraft to I0_0 of the original value, the response

requirement of the control system would require a response capability of

20 cps. This is not practical with present momentum-storage concepts for

large space stations, such as that for the MORL. However, it should be

noted that this control capability only will be required during periods of

ultrafine pointing requirements.

The minimum level of console operation for the three tasks (torquing,

sliding, and push-pull) produce disturbing forces of approximately Z ib,

with a predominate frequency of lcps. This Z-ib force is the threshold level

at which a crew member can perform the necessary tasks at a console. It is

this threshold level that provides the disturbance profile during the short

periods of fine pointing requirements. By properly designing the console,

these threshold levels of disturbance can be reduced. The design should

(1) minimize the travel of the operator's arm to perform the necessary con-

sole operations; (2) minimize the restraining forces of movable console

hardware, (3) provide cushion areas which could receive impulse-like

forces from the operator, and (4) place isolators in the restraining devices

which would hold the operator at the console position to reduce the forces and

moments applied in performing the console operation.

Some experiments may require fine attitude hold over long periods of

time, such as one orbit period. During these experiments it may not be

possible for the entire crew to remain at one station. Hence, the minimum

level of locomotion will determine the magnitude of the disturbances during

these experiments. The minimum force levels of locomotion noted from

these tests are 9 Ib for the velcro walk and IZ ib for the guided locomotion,

with a predominate frequency of approximately i cps.

From several of the tests performed, it was noted that a particular

force component was much less than predicted as compared to the other



force component. These are the tests during which the subject is standing
with his feet restrained. When performing a body segment motion in this
position, the other body segments tend to compensate for this motion,
thereby reducing any change of angular momentum about the vertical (axis
of suspension) direction. This results in transmission of smaller forces in
a parallel direction to the standing surface than predicted. The mathematical
model does not include this compensating characteristic of man.

Such compensating body segment motion has an adverse effect on the
subject when he is velcro walking without hand holds. As the subject moves
his foot forward, his torso moves in the opposite direction. To compensate
for this effect, a moment must be produced by the flexure of the ankle so
that the body is rotated in the walking direction. This induced moment

appears to be so small that velcro walking without the use of a hand hold will

be laborious if not impossible.

Table II shows the effect of a few of the basic crew motions on the

attitude hold and rate stabilization errors of a MORE spacecraft. It is

assumed that the MORE is uncontrolled because these disturbances, sinus-

oidal in nature, exhibit a much higher frequency than the present MORE con-

trol system can respond to. The present MORL control system (control

moment gyros) response is 0. 03 cps for the roll channel and 0. 0067 cps for

the pitch and yaw channel. The necessary parameters for the spacecraft

are given in the table If. The equations of the disturbances for the first

three motions are based on the fundamental term of the Fouries series

derived for the motions in Appendix C. (The fundamental term for these

motions performed by Subject A is large compared to the harmonics. ) It is

pointed out that the MORE attitude error resulting from the astronaut free

soaring a distance of Z0 ft with either a nominal or maximum effort is twice

as large as the 0. 13 ° assumed in the MORE Stabilization and Control System

study. This maximum effort of free soaring, in which a soaring velocity of
7.7 ft/sec was attained, could be injurious to the crew member when

terminating his motion.

The primary source of attitude error produced by crew locomotion is

the astronaut's displacement. This displacement produces a rotation of the

spacecraft body-axis inertia relative to the principle axis of inertia. It is
because of this that the attitude errors for the nominal and maximum cases of

free soaring are nearly the same. The small difference in the attitude
errors is the result of the accumulation of attitude error during the push-off

and impact-force profiles. Hence, the locomotion velocity or the particular

means of locomotion, whether walking, soaring, or guided soaring, are

practically independent of the attitude error accumulated for the total

astronaut's moment. Different types of locomotion may produce higher

transient attitude errors during the movement, but the total accumulated

attitude errors will be nearly the same for a given astronaut displacement.

It should also be noted that the minor type of crew motion, such as the

single pendulum arm motion, produces an attitude error of approximately

3 arc sec, with the assumed MORE parameters. For an attitude-hold



TABLE II

MORL RATE AND ATTITUDE ERRORS RESULTING

FROM CREW MOTION DISTURBANCES

Motion

Single pendulum
arm motion

Leg motion

Bending at waist

Free soaring

nominal

maximum

Max. force

(Ib)

3.2

7.6

9.0

92

35O

Max. rate

error

(deg/sec)

-3
1.7x I0

4.7 x I0-3

9. 0 x 10-3

36 x 10 -3

96 x 10 -3

Max. attitude

error (deg)

-3
0.9x I0

2.7x I0 -3

8. 5 x 10 -3

Constants:

Subject A.

Motion 20 ft from spacecraft center of mass.

Spacecraft moment of inertia of 500 000 slug-ft 2 (MORL).

Comments

Distance

traveled

is 20 ft

capability of meeting astronomical experiment requirements, for instance

O. 1 arc sec, the MORL crew members must be isolated from the experiment

platform, or a means of combating the high-frequency aisturbances produced
by crew motion will be required.

The primary disturbing moments induced on the spacecraft are a function

of the crew motion disturbing forces acting at a nominal distance (6 to 8 ft)

from the space station center of mass. The moments generated by the

angular acceleration of the body segments are insignificant and can be
neglected.

The counterbalanced pendulous simulation technique provides a method of

recording the disturbance forces produced in the local horizontal plane with

an accuracy of 6%, at reasonable expense. This simulation scheme also is

readily adjustable to different subjects at a minimum of downtime. The sub-

ject assumes a normal position with the body segments because the counter-

balanced segments can move easily in the vertical plane. However, this

simulation technique is not recommended whenever large translations by the

subjects are required. The counterbalance weights introduce an error into

the simulation by moving vertically whenever the subjects translate in the

horizontal plane.
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RECOMMENDA TIONS

Two areas of activity are recommended for additional study: (1) crew

motion disturbances during extravehicular activity (EVA) and (Z) design of

isolators to minimize transmission of disturbances to the spacecraft.

The extravehicular crew motion study would be performed with the same

simulation scheme used for this study with the subjects' wearing space suits.

The space suit probably will restrict the deflections and rates of the subjects'

body segments. Also, a new catalog of the subjects' motions would be

required for a good representation of EVA. These data would be especially

valuable for use in such programs as the orbital astronomy support facility.

The optimum location of compensators installed to eliminate unwanted

disturbances is at the source of the disturbance. Accordingly, isolators

placed between the astronaut and the spacecraft would reduce the amplitude

of the crew motion disturbances to a level at which control systems might not

be required to compensate for the crew motion. These isolators would not
require any external power source and would be designed as an integral part

of the shoes and restraint system.

The crew motion isolator study should include an investigation to identify
various materials and mechanical devices suitable for use as isolators. It

should include analytical analysis to specify and evaluate the characteristics

of the isolators, design and fabrication of the best designs, and a test series

to evaluate design characteristics.



APPENDIX A

Error Analysis

The primary errors associated with this zero-g simulation are of two

basic types. The first consists of errors in the forces and torques induced

on the platform because of differences in crew n%otion in a !-g environment;

compared with that of space. The second consists of errors in the measure-

ment of the induced disturbances.

The errors in induced disturbance are caused by the following:

(1) Deviations of the supporting force point of application from the

desired center of mass of the quasi-rigid body segment.

(2) Forces necessary to overcome the friction of the pulleys.

(3) Deviations in the alignment of supporting forces from the local
vertical.

The errors in measurement of induced disturbances caused by the following:

(1) Platform accelerations.

(Z) Imperfections in force balance and transformation matrix used in
data reduction.

To determine the errors in induced disturbances, a previous example of

crew motion will be illustrated. For this example, the man is comprised of

two quasi-rigid parts with straight arm or leg motion.

The following figure represents the simplified crew motion used in

determining the errors in induced disturbances.

=Ys

XS

Z B

x,/ -- _y,
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where

Xs' Ys' Zs
inertial axes

X_ y_ Z main body axes

I I
y , z leg or arm axes

radius vector from or

body axes

tgln of inertial axes to main

C
radius vector from orlgln of inertial axes to

instantaneous center of mass of men

7
0

radius vector from origin of main body axes to

main body center of mass

_S

es

radius vector from orlgtn of main body axes to

application point of support force

radius vector from origin of arm or leg axes to

application of support force

_'bs

radius vector from orlgln of main body axes to

origin of arm or leg reference axes

support force of main body

es
support force of arm or leg

P
b

gravitational force on main body

F
e

gravitational force on arm or leg

force vector of platform on main body

torque vector of platform on main body

M mass of main body

n-i mass of arm or leg

For the case of the zero-g sin_ulation, the translational equation of

motion of the center of mass of the man is given in vector form as follows:

dz
_"_ + _'b + _'bs + 7- + 7- : (M + m) c (A1)

e es dt Z
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The acceleration is derived from the general equation defining the radius

vector, which is as follows:

i[ ](M+m) M( +7 o (AZ)

For the zero-g simulation, the only variable on the right side of eq.

is p. This assumes the platform (laboratory) is not accelerated by crew

motion. Hence, the acceleration term for eq. (AI) is given by

(AZ)

C._ m

dt 2 M + m dt z
(A3)

In the true zero-g environment, the translational equation of motion is

given as

d Z R'

iF_ + F b + F = (M + m) c (A4)
e dt z

(The primes denote the difference between the true and simulated zero-g

parameters. )

For the true zero-g environment, the vector _ is no longer a constant,

and the acceleration is given as the following equation:

dZ R'c = ( 1 ) [MdZ______ [dZ R + d__/]dt Z M + m dt Z + m _ dt 2 dt /J

(A5)

Ideally, the force measured in the simulation must be equal to the force

imposed in the true zero-g environment, as

=?i (A6)
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Substituting eq. (A3) into (AI) and eq. (AS) into (A4),

constraint equation is obtained from eq. (A6), as follows:

the required

-" __ d 2 _{+MdZR+m -0

Fbs + _'es dtZ dtZ
(A7)

Because dZ _</dt 2 =-_, the required magnitude and directions of the

supporting forces are obtained as follows:

_bs ---M_ (AS)

_" : -mi (A9)
es

For the counterbalanced zero-g simulation, eqs. (A8) and (A9) will also

contain a small friction-force component. This friction force caused by the

pulleys is approximately 5% of the bearing loading of the pulley. Because

the loading of the pulleys is twice the segment mass, an error of I0% of the

suspension forces is produced by them. The error resulting from pulley

friction will result in a crew motion force error of approximately 0. 5 ib in

the x and y planes.

The required points of application of the supporting forces, _bs and _es,

are determined by applying Newton's second law of rotational motion. Again,

for the zero-g simulation, R is constant and the following vector equation ::_

is obtained.

d ._ -_

d-T(HT ):_ + _ ×T_ +_ ×_ +(_+ Pes )×T_o b s bs es

-
e dtZ

(AIO)

where TIT is the total moment of momentum of the two-segment man model.

:::Based upon derivation in "Active Satellite Attitude Control" in Guidance and

Control of Aerospace Vehicles. Ed. C.T. Leondes, McGraw-Hill Book

Company, inc., New York, 1963.
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In the true zero-g environment, the moment equation is obtained with

variable. The equation _':'_is as follows:

(_IT) =-_'i+ro x _'b- M-_ Xo --dZR +-Px_dtZ e -mp x _dt/d_-+ ddt_)

(All)

The torque from the simulation, '12 , and the torque from the ideal case,

TI, must be equal.

TI = (A lZ)

From eqs. (A10) and (All), the restraint is obtained as follows:

With

_. _. __ d Z _ -_ d Z
+ +Mr

s bs _es es o dt 2 dtZ

d Z f_

dt z --_ and eqs. (A8) and (A9), eq.
(A13) is reduced to

o (AI3)

(_s_ -7o) x Fbs + De s x _es = 0 (A14)

This equation is satisfied by the sufficient condition

= r and _3 = 0
s o es

It has been illustrated that the ideal zero-g simulation of measuring the

forces and torques produced by movements of a crew member to a space

vehicle requires two conditions: (1) each quasi-rigid part of the man must be

supported by a force equal in magnitude to its gravity force, and (Z) each

supporting force must be aligned with the -g vector through the center of mass

of the part.

:::Based upon derivation in "Active Satellite Attitude Control" in Guidance and

Control of Aerospace VehicIes. Ed. C.T. Leondes, McGraw-Hill Book

Company, Inc., New York, 1963.



Single Segment Leg Swing

Utilizing the notation in eq. (AI4),

! |_

Total mass of crew member = 5. 37 slugs

M (body mass) = 4. 47 slugs

m (leg mass) = 0.9 slugs

- 5 ) = 0.05 fto

(This value assumes that the alignment of the body center of mass is within

0. 05 ft of the support.)

= 0.6ft
es

(This value is based upon supporting the leg at the calf. )

The supporting forces are as follows:

Fbs = 4. 47 g = 145 ib

F = 0.9 g = 28. l Ib
es

Substituting these values into eq. (AI4), with the condition that (_s - _o) and

_es are aligned with the local horizontal plane, the disturbance torque is

obtained as:

-Terf = 0. 05 x 145 + 0. 6 x Z8. I = Z4. l ib-ft
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This disturbance torque is in the local horizontal plane and is parallel

to the surface of the platform. The torque will rotate the subject until his

center of mass is aligned with an 'Tequivalent single supporting cable." If

the subject is attached to the platform, this initial disturbance torque will be

transmitted to the force balance unit. This disturbance torque is analogous

to a static error, which will be zeroed out by the force balance unit before
the start of the test.

This large error torque indicates that each body segment should be

supported as close to its center of mass as possible. For instance, if the

leg is supported just above the knee instead of the calf, the error in the

disturbance torque would be reduced to the following.

_erf = 0. 05 x 145 + 0. 1 x 28. l = 10 Ib-ft

This error is still quite large and every measure of careful balancing should

be taken to reduce it. The misalignment of the leg center of mass and

supporting force alone produces a 5% error in the disturbance torques.

Single Segment Arm Swing

Parameters for the arm swing are as follows:

M = 5.06 slugs

m = 0.31 slugs

):o. osft
S 0

-_es = 0. 3 ft

The supporting forces are obtained as

Fbs 5. 06 g 163 ib

Again, with the aid of eq.

following:

F = 0. 31 g = l0 ib
es

(A14), the error in the disturbance torque is the

= 0.05 x 163 + 0. 3 x l0 = Ii. Z ib-ft
err



The misalignment of the arm center of mass and its supporting force alone
produces a i0 to 12% error in the disturbance torques.

Thus, it has been illustrated that the supporting force must be aligned
with the center of mass of the part to reduce errors in the torque
di stur bance s.

The third primary source of error in induced disturbances is caused by
deviations in the alignment of the supporting forces from local vertical. The
counterbalance system for the zero-g simulation has a variable pendulum
length as well as the usual pendulum swinging motion. A dynamic analysis
of this counterbalance system for the zero-g simulation is presented in the
following paragraphs to determine the errors associated with the suspension
system.

From the following figure, the kinetic and potential energies are deter-
mined for motion in a single plane.

x-//A

(L-O

w y

T = I/2 W (_2 + @2r2 ) + I/2 W ÷2
g g

V = - W(_- r) - Wr cos @

The Lagrangian is defined as

L = T - V = i/Z m (2_ 2 + @Zr2)

+ mg_- mgr (i - cos @) (A15)

The equations of motion are obtained from

d $(8___i) 8L
-0 (A16)

and are given as follows:

@Z

F- _-r +_(i - cos O) = 0 (AIr)

§ + Z r_"@ + (g/r) sin 0 = 0
r

(A18)
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A digital computer program is utilized to solve these two nonlinear differ-

ential equations for the various initial conditions specified. However, before

the results of the computer program are presented, an analytical probe will
be made to determine what the characteristics of the two variables r and @

are l_ke.

Assuming small angle approximations, eqs. (AIT) and (AI8) are
rewritten as follows:

-_- r + (g/4)e_ = 0 (Ai9)

÷
+ 2r _ + (g/r)@ = 0 (AZ0)

The crew motion used to study the dynamics of the suspension system is the

free translation exercise. For this exercise the man pushes off the platform

at some given velocity, r 0o"

Making the usual substitution for removal of the first derivative term of

eq. (AGO), Y = @e/r/r dt the following is obtained:

:,,; + g - F
--7-- _ = o (Ael)

If the free translation is to be performed at small velocities, say 1 to 4 ft/sec,

then the linear acceleration, F, will be small compared to the gravitation

acceleration, g. Hence, eq. (AZI) can be approximated as a second-order

differential equation with constant coefficients.

Solving eq. (AZI) and substituting O = ye -/÷/r dt for the dummy

variable, the following is obtained:

- fi'lr dt
0 = e (A cos _t + B sin _t) (AZ2)

where

VCg- _ (A23}_3 = r

14:



Reducing eq. (AZ2) further and substituting the initial conditions of

@ (0) = 0, r (0) = ro, and @ (0) = @o' the angular displacement is obtained:

@ = (ro/r) (@o/_) sin _t (A24)

On the assumption that F << g, the angular displacement is found to be a

nearly sinusoidal function with a slightly decreasing amplitude.

For the second variable, eq. (AI9) is multiplied by the factor 2 (dr/dt).dt

and integrated to obtain the following equation:

r = (dr/dt) 2 = 2 (@Z/Z) r - (g/4) @2 dr + C I

where C1 is the constant of integration, performing the integration and

rearranging as follows:

dr

(1/2 _)2r2 - (g/z)@Zr + G1 )1/2

= dt (A26)

With the initial condition of r (0) = to,

obtained from eq. (A26) as follows:
the pendulum length, r, is

r = r + P_(t) sinh (@t/ _J-2) (AZ7)
o

With @ a sinusoidal function of time, t, the complexity of eq. (AZ7) needs no
comment.

To substantiate some of the approximations made for the analysis, the

results of _ computer run using eqs. (AI7) and (Al8) are given in fig. A-l.

The parameters used in the computer run are a pendulous length of 54 ft

for the man with an initial push-off velocity of 3. 75 ft/sec, which corres-

ponds to a @o of 0. 07 rad/sec. Only half of the period is illustrated, because

the man impacts on the platform at this point. Fig. A-l shows that the

maximum angular excursion, @, is approximately 5. 5 ° for this relatively

high translational velocity. In reducing the translational velocity by half,

the angular excursion will be decreased by half. The other parameters of

interest are the pendulum length and its derivatives. The plot of the pendulum

length indicates that th_ man will drop approximately 3. 5 in. during the

_I 1 m
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swinging motion. Because the pendulum length changes very little, the

assumption of _"and i_ being small is valid for this particular time period.

Hence the counter balance suspension system is very nearly the same as a

pendulum system.

The errors associated with the suspension system are directly propor-

tional to the alignment of supporting forces from the local vertical. For the

free translational motion (assuming Z ft/sec velocity) the error in the force

disturbances is approximately 5%, as obtained from ratioing the data given

by the computer program.

For the leg motions with the leg support at the calf, the maximum

support excursion is Z ft, which produces an alignment error of Z/54 = 3. 7%,

where 54 ft is the suspension length. If the leg is supported just above the

knee, the error in the disturbance force is I. 3/54 = Z. 4%.

For the arm motions with the support at the biceps, the error in the

disturbance force is i. 1%.

Some of the tests involve movements of several body segments. The

error associated with the alignment of the supporting forces is then a combi-

nation of several cable alignments with different forces.

Platform accelerations and imperfections in the force balance are the

two error sources in the measurement of induced disturbances. Analysis

indicates that the platform natural frequency is high enough (150 to 300 cps)

so that the platform accelerations will be negligible. On the basis of the

analysis of the platform frequency, a disturbance error of less than i%

exists. The imperfections of the force balance are similar in nature to the

platform accelerations. The force balance has six modes of vibration which

are coupled into independently excitable groups. These modes of vibration

are in the range of 34 to 850 cps. By orienting the force balance so that the

lower mode is least excited, the lowest frequency associated with the force

balance dynamics would be approximately 80 cps. The error associated with

this dynamic mode for a 20-cps frequency is illustrated in the following

paragraphs.

The dynamic equation is given as follows:

+ Kx = F sin _tt (AZ8)

wherek - frequency of input disturbance

_Z = K___= modal frequency of the force balance
m



The solution to eq. (AZ8) is:

x = (sin)it - sin _t) (A29)
m (p2 _ )i2)

From the ideal case of measuring the force, the error associated with
the force balance can be obtained. This is found from eq. (A28) by lettering
m---0. Hence, for the ideal case the following equation is given:

F
x = _- sin )it (A30)

If the input frequency is i/5 of the force balance-response frequency_,

the error in measuring the amplitude of the response frequency is 4%. [This

is obtained from ratioing eqs. (A29) and (A30)]. There is also a component

of the response which contains the force balance frequency. This component

would be 20% of the amplitude of the input frequency. Because this component

is a frequency five times higher than the input, its effect distorts the lower

or input frequency of the output.

From the dynamic analysis of the crew motions presented in Appendix IB,

the input frequencies of the disturbances were found to be in the range of

1 to 15 cps. These, of course, were based upon assumed body segment pro-

files for the motion. Assuming disturbance input frequencies are in this

range, an expected error of approximately 40 for a 15-cps input frequency

will be associated with the lower mode of the force balance. Of course, the

lower the input frequency, the smaller the error of measurement is. The

instrumentation error is less than 2%.

A summary of the errors in the simulation for several crew motion
exercises follows. Maximum errors are used for these conditions.

Free Translation Exercise (velocity of 2 ft/sec)

Suspension alignment

Supporting force aligned with the center
of mass

Force balance imperfections (based upon

12 cps input frequency)

Instrumentation

Platform Acceleration

5%

0

2.3%

2%

1%

Total Error (RSS) 5.9%
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Leg Motion Exercise

(based upon support above knee)

Suspension alignment

Supporting force aligned with center of

mass (based upon alignment of leg

support to leg center of mass within

0.05 ft)

Force balance imperfections

Instrumentation

Platform acceleration

Total Error (RSS)

2.3%

2%

1%

4.5%

Arm Motion Exercise

(based upon support above the elbow)

Suspension alignment

Support force aligned with the center of

mass (based upon alignment of arm

support to arm center of mass within

O. 1 ft)

Instrumentation

Force balance imperfection

Platform acceleration

1.1%

4%

2%

z.3%

1%

Total Error (RSS) 5.3%

The crew motions which involve combination of arm and leg motion will have

a total error equal to the average value of the individual errors. Thus, the

simulation of crew motion activities is accurate to approximately 6% of the

measured values.

14



APPENDIX B

Analysis of Body Segment Motions

The analysis for the specific crew motions considered are based upon

the following four as sumptions:

(I) Each quasi-rigid part of the man must be supported by a force

equal in magnitude to its gravity force.

(Z) Each such supporting force must be aligned with the -g vector

through the center of mass of the part.

(3) The entire force and torque vectors resulting from the segment

motion is transmitted to the platform (laboratory).

(4) There are no accelerations of the platform (laboratory) caused by

body segment motions.

For the single-plane body motions considered (arm swing, leg swing,

and body bending at the waist), a pendulum model is used to derive the equa-

tions for the forces and torques resulting from the segment motions. The

magnitudes of these forces and torques are a function of the segment masses

and inertias as well as the assumed rate profile for the various segment

motions. The body segments mass and inertia are obtained from NASA's

MAID Program.

To determine the resulting forces and torques on the platform (labora-

tory) from the crew motion, a generalized reference system is used to

describe the location of the disturbing source with respect to the center of

mass of the platform (laboratory).

The models, analyses, and reference systems used to describe the

single-plane body motions are presented in the following paragraphs.



Double Pendulum Model

Arm, leg, and body bending motions. --The center of gravity displace-
ments .are given as follows:

xl ="_I sin 81 (BI)

Yl = -_I cos 81 (B2)

x Z = _sin 81 + _Z sin 8Z (B3)

YZ = - (_ cos 81 +_Z cos @Z) (B4)

The center of mass accelerations of
the two segments are obtained from
the above.

2 sin @ ) (B5)_i = _I (el cos e 1 - el i

Yl = _i (@i sin @i + @I 2 cos @i ) (B6)

Z sin@ )
_Z = _(@I cos 81 - @I 1

+£Z (@Z cos @Z - 8Z 2 sin @Z) (B7)

Z
YZ = _ (@I sin @1 + 61 COS @i)

+ _Z (@Z sin @Z + @Z Z cos @Z) (BS)

The forces acting through the center of mass of the second segment are
as follows:

Fx 2 = mz x2 (B9)

= mz Yz (B10)
YZ



where x2 and Y2 are given by eqs. (BT) and (B8) respectively.

The torque acting on the second segment is

Tz2 = 12 @2
(Bll)

Referencing the forces to the hinge point between the mass segments,

the following expression for the torque is obtained:

Fy2

t_12,

_x

Fx2

m2

Tzd Z = TZ + Fx Z _Z cos @Z + Fyz_Z sin @2 (BIZ)

The forces and torques on the first mass segment are obtained with the

aid of the following diagram:

Fy1

H

k_Fy2 '

z ___ Fx2
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The total forces at the hinge point are as follows:

Fxh = Fx2 + Fxl (BI3)

F = F + F (B14)
yh Y2 Y 1

The total torque is given as follows:

Tzt = Tzl + Tzdz + Fxz£COS @l + Eyz£Sin @l

+ Fx I _l cos @i + Eyl _i sin 81 (BI5)

Substituting the expressions for eqs. (BI3), (Bl4), and (B15), the total

forces and torque are obtained as follows:

: z 6zz
Fxh (m I £1+mz_)(@l cos @i- @i sin @l)+mz _Z (@Z cos @Z- sin @Z)

(BI6)

=(m _I+ _ sine _6 2 6zz
Yh l mz_)( i 1 i cos @l)+rnz _Z (@Z sin @2 + cos @2)

F

(BIV)

Tzt = (If +ml _l Z+mZ_Z)@l+(IZ+rnZ _22) @Z +mZ _Z _ (@i +@Z ) cos (@Z - @i )

- m z _2_(@Z @i) sin (82 - 81 ) (BI8)

Eqs. (BI6), (BI7), and (BI8) are used for the two-segment arm and leg

swinging motions. The magnitudes are obtained from an assumed rate profile

of the two segments.

In the case of the motion for body bending at the waist or straight arm

or leg swings, eqs. (BI6), (BI7), and (BI8) reduce to the following (this is

the single-segment motion):

.°

F = rn _ cos @ _ _ Z sin @ ) (BI9)
x e e (@i l 1 l
sh
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• elzF = m _ sin 81 + cos 81)Ysh e e (@I (BZ0)

Tzs t = (Ie + m _ Z) _ (B21)e e 1

where m e is the mass of the single segment and J_e is the length from the hinge

point to the center of mass•

The coordinate system of the man _ _,=,=,,_ed to +u= platform or floor of

the laboratory is given to determine the forces and torques imparted.

Because the man is fixed to the floor, his segment motions will appear as a

reaction on the floor.

(x, y, z) = segment hinge coordinates

(xf, yf, zf) = man coordinates with respect
to floor or platform

h s = shoulder height above floor

hs Y
u
a

= shoulder width

YuL = hip width

hh = height of hip joint above floor

The forces and torques imparted to the floor are given as follows:

F = - F [eqs. (BI6) or (BI9)]
xf x

(B22)

F = - F [eqs (BI7) or (B20)]
Yf Y

(B23)

F =-F =0

zf z

(BZ4)
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The torques for the arm segment motions are given by the following:

Txf = Yu i¢ [eqs. (B17) or (BZ0)] (BZ5)a Y

T = - Yu F [eqs. (B16) or (B19)] (BZ6)
Yf a x

T = - r [eqs. (BI8) or (IBZI)] + h Ip [eqs. (BI6) or (BI9)] (BZT)

zf z s x

The torques for the leg motion or upper body bending are similarly derived.

Txf YuL Fy [eqs. (BI7) or (BZ0)] (BZ6)

T = - YuL F [eqs. (BI6) or (BI9)] (BZ7)yf x

Tzf Tz [eqs. (B18) or (BZ1)] + h h iFx [eqs. (B16) or (B19)] (BZ8)

To predict these forces and torques, it was mentioned that a segment profile

is required. The total time for the motion can be assumed fairly accurate.

The acceleration and rate profiles of the segments that tend to be obscure in

the prediction of these forces.

An example of the single pendulum arm motion follows. A simple seg-

ment profile of constant acceleration/constant deceleration rotating through

90 ° will be used.

The arm parameters for the subject are given by the following:

m : 0. 31 slugs (mass of arm)e

1 = 1.01 ft
e

I = 0. 482 slug-it Z
e
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From eqs. (BI9), (BZ0) and (B21), the following expressions are
obtained:

F x = O. 315 {@i cos @1 - @1 z sin 81) (BZ9)

% = 0. 315 (@1 sin @ 1 + @i 2 cos 01) (B30)

T z = 0.482 §1 (B31)

The expressions for the segment profile are given by the following:

= Zw rad/sec 2 for 0 -_ t-< 0. 5 sec

= -Zw rad/sec Z for 0. 5 sec<t -< I. 0 sec

Substituting the angular acceleration and its two derivatives into

eqs. (B29) and (B30), the peak amplitudes for these two forces are approxi-

mately 2 Ib in each case. The results of the simulation showed the maximum

y components of force to be 3 ib and 2.6 Ib for the two subjects. The maxi-

mum x components of force obtained from the simulation of the arm motion

tests is approximately I. 4 lb. From the simulation data of the single pendu-

lum arm motion, the acceleration of the arm appears variable. The slopes

of the force curves at the start and end of the motion are small, indicating a
small initial acceleration of the arm. The arm motion in the tests was com-

pleted in approximately 1 sec, which indicates higher accelerations later in
the arm motion.

The x component of force computed is larger than that measured. This

is the result of assuming a rigid model for the analytical expression. For

any type of segment motion in which the crew member remains on a given
point in the spacecraft, his transmission of force in a forward direction

parallel to the surface will be small compared to the force he transmits
normally to the standing surface. The reason for this is that the remaining

body segments (other than the segment moved) tend to rotate in the opposite

direction. Hence, the change in angular momentum for the total body is

small, resulting in a small force transmitted parallel to the platform. From

this it is noted that the model of the waist bending should be a double pendulum

or two-segment model. The force derived from the single-segment model

will be much higher than those of the simulation.

The basic use of the models for the segment motion is to size the force

balance unit and to ensure the order of magnitude of the actual test data.
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APPENDIX C

DISTURBANCE PROFILE DEFINITION

.... '--':- "e_s_'_,_ d_¢_ning the disturbance profiles is presentedI ne at,_yLL_al exp. _ ............

in this appendix. A Fourier series is used to express the data, primarily

because of the sinusoidal nature of the curves. The raw data, F(t), are

used when evaluating A(N) and B(N).

t

A(N) - Z fftf F(t) cos Nxt dt for N = 0, 1, Z .... i
o

and

t_

B(N) = Z_ F(t) sinNxt dt for N = 0, 1, Z .... i
tf

o

A digital computer was used to evaluate the terms of the Fourier series.
The Fourier series is of the form

f(t)

tf 7

X E I
t=0 N=I

cos (NX) t + B(N) sin (NX)t ]

where f(t) is the general form of the dependent variable F x, Fy, F z, M x, My,
or M z. X is the fundamental frequency of the series, and t is the independent

variable, time. N is the harmonic of the fundamental frequency, and A o is

the value of A(N) for N = 0. The series is valid for all values of time within

the limits of 0 and tf. The coefficients are to be multiplied by 10 to the power

indicated by the number following the symbol E in the data columns.



FX

SINGLE PENDULUM ARM MOTION

SUBJECT A

FY

X = 6.6 tf = 1.05

N A[N] B[N] AIN] GIN]

0 .5347q38E O0 .O000000E O0 ,3331490E O0 .O000000E O0
t -.2097507E O0 -.7851553E O0 -.IO09gOIE Ol -.2202812E 01

2 ,2399528E-02 -.3938930E O0 ,=370842E O0 .231020_E-01
3 -.1453359E-01 -.1707139E O0 -,6130150E O0 -.7869905E O0

4 .3452413E-01 .6381057E-01 .4277277E O0 -.3750472E O0

5 .3446670E-01 o_433963E-01 .24217QgE O0 .2055070E-01

6 -.8575009E-01 .1314487E O0 -.5182676E-02 -.1825331E-01
7 .3666929E-01 .3741262E-01 .3997053E-02 -.5074_31E-02

FX FY

SUBJECT B

X = 5.5 tf = 1.2

N AtN] BIN] AIN] BIN]

0 .6142769E O0 .O000OO0 E O0 -.76829goE O0 .O000000E O0
1 .4361587E O0 -,2541772E O0 .t0_6594E Cl -.1240308E Cl

2 .2104363E O0 -.1313119E O_ -.5265270E-01 -.3271884E O0

3 .1995187E-01 -.1553050E O0 -.2906438E O0 -.616112_E O0

4 -.1901245E-0t .IOg4145E O0 -.82_606E-01 .1814341E O0

5 ,2351944E-01 -.4588781E-01 -.4776368E-01 -,1456081E O0

6 -.9507094E-02 -.1071_85E O0 -.5577885E-01 -.2092909E-01

7 .3230487E-02 -.572025_E-01 -.54_6113E-01 -.2745285E-01

DOUBLE PENDULUM ARM MOTION

SUBJECTA

FX

N A{N] 8IN] A[N]

0 .Q735524E O0 oO000000E O0 .6633504E O0
I ,2253333E O0 -.608q527E O0 -.5424132E O0

2 ,2179341E O0 -.8025142E-01 .8901636E O0

3 -,2491044E O0 .IISllqSE O0 ,5664833E-01

4 -. 1141573E-02 -. 1724538E-01 ,1431812E O0

5 -.4171675E-01 -.3883245E-0I -,4049219E-01

6 .3306072E-01 -.1005272E O0 -.1176441E O0

7 . 1484623E O0 -. 2284355E-01 -.5242835E-01

SUBJECT B

X = 762 tf = 81

FY

BIN]

• O000000E O0

-.1962490E 01

-.8239609E UO

-o4924668E O0

• 1539153E-01

.3620010E O0

.1005913E O0

.6298__7gE-01

X = 5.57 tf = 1.14

N

0
1

2
3

4

5

5
7

AIN]

.1270393E 01

.5034773E O0

-.2127560E O0

-.21_0345E O0

,760682qE-OI

.1123761E-01
-,6579225E-01

-.26??751E-01

FX

BIN]

•O000000E OO

-.4894C32E CO

• 811117_E-O?

.9447111E-01

-.5173160E-01

-. 806_70r}E-0.1

-.985Q765E-OI

.591_'_77E-01

A{N]

-.1443474E

-.9a?O566E

.II08952E

.4220663E

.1870762E

FY

BIN]

01 .O000000E O0

O0 -.2159494E O1

Ol .1974578E (]1

O0 -. I07o45gE O0

00 -.1874079E t)O

-.4203364E-01
-.525_250E-01

-.2765992E-01

-.1_75683E-02

-.1074715E O0
-.1103700E O0
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N

0
I

2

3
4

5

6
7

A[NI

-o4447346E O0

-.3047416E O0
o2843377E O0

.8853082E-01

•1596180E 00

o.2394451E-01
qnn_n_KE NN

o8794077E-01

N

0

I

2
3

4

5

6

7

A(N)
-.22g1528E Ol

• 3852250E O0
-o5620783E-01

.7662382E-01

.1197401E-02

-,7628045E-02
o1331861E-01

.2941550E-01

FX

MY

N
0
1
2
3
4
5
6
7

AINI
-.3970205E O0

• 1756022E 01
.5394433E-01

-.2610847E O0
-o6770240E O0
-.I051685E O0

.4513540E O0
.8170574E-01

FX

N
0
1
2
3
4
5
6
7

A(N!
-.1134649E 01

.g243648E O0
-.4483917E O0
-.16tlOOOE O0

°76_2484E-01
-o2774_72E O0
.-.160ggg4E OO
.22go771E O0

FX

HEAD MOTION

SUBJECTA

B(NI
• O000000E O0
• 5755338E O0

-.3088696E O0
-.6708218E-01

.4232243E-01

.3gOO198E-01

.5399260E*01

.6117100E-01

B[N]

•000000oE 00

-.2163551E 00

.1015998E 00

.7687129E-01

.6472280E-01
-.3152970E-01

.1868627E-01
.4439292E-01

BENDING AT WAIST
SUBJECTA

BIN]

°O000000E O0
.3985060E O0

.5622934E O0

-.3800677E O0

-.2233066E O0

,3330746E-01
-.g518288E-01
-.1690414E O0

SUBJECTB

8{N]

•00O0000E 00
•II17271E 01

.8707650E 00

•I087109E 00

-.4068634E O0

-.303_805E O0
.267_575E O0

-._526939E 00

FZ

AIN)
• 2011759E Ol

-.3993982E O0
.14907ale O0
• 1727750E O0
.172681gE-01
.73517_5E-01

.3101464E-03

.4166010E-03

AIN]
.3030851E
.2590438E
.4401490E

-.1103157E
-.9922137E
-.8919521E
-°4301755E

.1348687E

FY

A[N]
.8223813E

-.2237579E
.4,305919E

-.P9357oIE
.5#53965E

.7674562E

-.218_73CE

X=6.86 tf=.93

-.3323107E-02

BIN)
• O000000E O0

-.4234483E O0
-.221188gE O0

.2495565E O0

.6882351E-01
-.5365642E-02

.9813739E-01

.1043563E uO

X= 3.34 tf = 1.88

01 .O000000E O0
01 .6030340E 01
O0 -.2240487E 01
O0 -,1949467E 01
O0 -,1225379E 01
O0 -,1461199E O0
O0 .2097650E O0
O0 -.2056469E O0

FY

X=3.5 _=I.8

8IN]
00 .OOCO000E O0
0t .6678796E 01
00 .SO42181E 00
00 -.900241_E OO
0O ,142473gE 01

O0 -.4677687E O0
O0 .d54332tE-01

o5506130_ 00

157B



FX

LEG MOTION

SUBJECT A

FY

X=5.58 tf=1.14

N A[N] BIN] A[N] _[N]

0 ,1260406E OI .O000000E O0 ,8793172E O0 ,O000000E O0
! -.3146733E O0 -.1875672E O0 -.1954_83E 01 -.5375665E 01

2 ,175031tE O0 ,1028118E O0 -,1564932E 01 -.4140908E O0

3 -.II02115E O0 .2072002E-01 -,2472876E O0 -.1988911E O0

4 -.7418184E-01 .2226971E-Ol .4715360E O0 .1242557E O0

5 .o175330E-01 .5793250E-01 ,3678795E-02 -.8612069E-01

6 -.4990132E-01 .1534853E-0I .35!7309E-01 -.1015206E O0

7 -,2818_9lE-01 -,t46050_E O0 ,17602_6E O0 -.5914664E-01

FX

A{N]

.3884201E 01

-._154848E-01

.74_4384E-Ot

,7010458E-01

-,1899272E O0

-,2189567E-01

-,6036180E-OI

-,3633068E-01

N

0

I

2

3

4

5

6

7

SUBJECT B

X=5.17 tf=1.32

FY

8[N] AIN] BIN]

•O000000E O0 -.1283947E Ol .O000000E O0

-.3010799E 0(? ,9_Bg649E O0 -,1884738E Ol

-,7962049E-01 .8721801E O0 -,1590553E 01

-,4540159E-01 ,3059777E O0 -.4702741E-01

-,241_426E O0 -,9554580E-01 -,2176563E O0

-,5797547E-01 -,2353971E O0 -,12_7925E O0

-,7472420E-01 -.1n_482_E O0 -.1846410E O0

-o707_696E-01 -,54_I165E-OI -,1743g_E O0

FX

VELCRO WALKING (NOMINAL)

SUBJECT A

I

I

.,,m

N AIN| BIN]

0 -.2984092E 01 .O000000E O0

1 .3752976E O0 -.3556625E 01

2 .1396409E 01 ,8646200E O0

3 -.I110557E O0 -.2412770E 01

4 ,7611601E O0 -,6065462E O0

5 -,3518052E-OI .734714gE O0

6 .9421387E O0 .563058;E O0

7 ,2539841E-01 -,234434_E OO

AIN]

.2944797E

•2206202E 01

-.2409724E Ol

.1917487E 01

,6101578E-01

,9014402E O0

,1617616E 01

,3013862E O0

FX

FY

01

SUBJECT B

N A[N] BIN] AIN]

0 -,1485642E Ol .O000000E O0 -.I142032E

I .2308_58E 01 -.8047964E 01 .225_4_3E

2 .32_9499E 01 -.1651677E O0 -.1836235E

3 -o3320926E O0 -.1146938E 01 -.3103047E

4 -,1276401E 01 -,_174785E-01 -,5255217E
5 -,3770898E O0 .1425172E OO -.851_428E

6 ,2111466E O0 .2241555E O0 .4280859E

7 ,1327652E O0 -.3310153E O0 ,2150184E

X = 3.24 tf = 1.935

BIN]

• O000000E O0
.1766387E 01

-.7397027E 01
-.3358776E O0

,6125341E 01

-,7347999E O0

._3124ggE O0

-.6162043E O0

FY

X = 4.24 _ = 1.485

BIN]

O0 .O000000E O0

01 ,_143450E O0

01 -,6469110E 01

01 ,802706gE 01

01 ,3569779E 01

O0 ,123505gE 01

01 ,117312_E 01

01 .1566681E 01
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FX

VELCRO WALKING (MINIMUM)
SUBJECTA

N A(N] B(N1 A(N1
0 .I0254Q4E O| -O000000E O0 .506_502E O0
t -.8145641E 09 --9167104E O0 -.9664661E O0
2 -.2985942E O0 .3907574E O0 .7747835E O0

3 .6643Q40E O0 .6150791E O0 .1419239E Ot
4 -.7333443E-01 -.4282459E O0 -.Tg20840E-O!
5 .1070062E O0 .3678313E O0 -.2410167E O0
6 .54t61=3E O0 .8520007E-01 .1014208E 01
7 .2Qg2456E OO .7092971E-0! -.3154611E O0

N

0
1
2
3
4
5
6
7

FX

AIN]
-.2561985E O0
-.4557920E O0

• 1480369E 01
-.4535974E O0
-°3475812E O0
-.4100415E-01
-.518110gE O0

• 2265406E O0

SUBJECTB

B(N] A(N]
• 0000000 E O0 -.1571538E

-.1085450E O) -.9430437E
-.1070802E 01 .6005421E
-,4792401E O0 -.7300022E

• 2208505E O0 -.2176322E
.1114873E O0 .1050392E
°5569561E O0 .1_55263E
.1614657E O0 .1_47082E

FY

FY

X = 2.48 tf = 2.05

B[N]
• O000000E OO
.2583216E OO

-.2364525E-01
.1750296E 01

-.4225572E O0
• 169361_E 01
.3336440E O0

-._50874_E-0t

X =3.98 tf = 1.58

B(N]
Ol -O000000E O0
O0 .1661606E 01
O0 -.1898435E 01
O0 .3794605E 01

01 ._757010E Ol
01 .5328085E O0

O0 .1048715E 01

01 .9196985E-01

N
0
1
2
3
4
5
6
7

A(N]
-.1597732E

.7562990E

.1005010E
-.1376615E
-.2596987E
-.4016032E

.3438324E
-,3121g67E

A(N)
".8702426E

.4135239E

.8180687E
".2290022E
"°3764038E

°3418321E
-.2977827E
-°gOt8631E

VELCRO WALKING (MAXIMUM)

FX

SUBJECTA

B(N) A(N]
02 -0000000 E O0 .7897145E O0
Ot -.2608558E 02 .QSO?870E 01

02 .346_311E Ol -.1116O67E O0
01 ,1532092E 01 -,1370506E 02

01 -.3593374E O0 ,g214915E Ol

01 -.3587498E O0 .3737916E 01
O0 -.3039994E 01 -.34a4704E O_
O0 -.204q230E 0t ,1877764E 01

FX

SUBJECTB

8(N]
01 .O000000E O0
01 -.3688037E 01
01 -.5545154E 01
O0 -.2064008E Ol

O0 .2195012E 01

01 -.4106494E O0

O0 -,2842580E 01

O0 .4041647E O0

A(N]
-.2128674E
.285955_E

-.2941876E
._I_073aE
.5021616E

,3015467E

.1440S52E
-.611646CE

FY

FY

X= 4.7 tf = 1.34

BIN)

•O000000E O0
.1220412E 02

-.1200736E O_
-.8952207E 01

-.214874_E 01
.1423543E 01

,3336338E 01

,1756216E 01

X =4.31 tf = 1.17

B(N]
O0 .OOOO000E O0
O0 -.3506012E O0
Ol .6041139E 01
01 .a671296E OO
O0 .5682a39E 01

Ol .1474678E 01

01 -,2334159E 01

01 .4688a7gE O0
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157E

X = 3.52

N

0
!

;2

3

4

5

6

7

tf = 1.1

A[N]

-.436_273E Ol

-,4743719E O?

.1735516E 02

.1144415E 02

.1895886E 02

.9663008E Ot
-.3558198E Ot

-.3381924E Ot

SUBJECT A

FY

FREE SOARING(NOMINAL)
SUBJECT B

8iN]

• O000003E O0
.1050248E 02

-.1461027E 02

.412662_E 01

-.t565734E 02

-.4809t54E O_

.5731945E Ol

.6520585E OI

FY

A[N]

-.2671871E 02

• 1285185E 02

-.6311774E O0

.6110171E O0

.45974_4E O0

-. 35851._7E-01

-.2203613E O0
• 1539082E O0

X = 14.45 tf = .42

B[Ni

• O000000E O0
.4996006E Ol

-.1103666E Ol

-.3665049E-01

-.4482265E O0

-.2117732E O0

.6755PO7E-OI

-.2452173E O0

SUBJECT A

FREE SOARING (MINIMUM)
SUBJECT B

X=11.9 tf=.53
X = 14.45 tf = 0.43

N _[NI

0 -.2_23224E 02

I .32595t2E Ot

2 .6430437E Ot

3 .2129tt_E Ot

4 .402428_E-r_t
5 -.6402a58E-Ot

6 .2_O5735E-Ot

7 .glq_a_2E-Ot

FY

SIN]

• O00000]E O0

.97n420?E O1

.2403315E Ol

-.I070147E 01

-.836_78_E O0

-.2_557P06 OO

• 192q_gSE':-_2

-.5697180_-02

FY

AIN]

-.4077669E 02

• 130_a47E 02

.3144408E Ol

.1961317E OO

•6647381E 00

.8910207E O0

.5532803E-01

.7004319E-01

BIN]

• O000000E O0
.1868841E 02

-.5089356E O1

.7853959E O0

-.1331724E O0

-.2735441E O0

•8_42444E-02

-.I074635E O0

FREE SOARING (MAXIMUM)

SUBJECTA SUBJECT B

X=246 tf=027 X=27. 9 tf = 0.26

N

0
1

3

4

5

5

7

FY

A[N] '""

-.3115181F 03

.17_9506E 93
-.2796541E 02

-.1677946E 02

.5355444E Ol

.2620034E O1

-.1116325E Ol

.4778403E O0

81N]

•O00000DE O0

-.4738038E Ol

-.1117432E 02

-.3032743E O1

.6685662E Ol

.6695000E O0

-.3320149E 01
-.5474518E O0

FY

AIN]

-.2035536E 03

.867to82E 02

-.1034839E Ol

-.5_62486E O0

-.5458473E O0

-.2527763E Ol

-.1548226E 01

-. 1773650E Ot

BIN1

• O000000E O0
.2148352E 02

-.1384844E 02

-.6099632E Ol

-.1598653E Ot
-.1233013E 01

-.7301754E O0

.4065411E-01

N

0

t

3
4

5
5
7

AINI

-.2651304E Ol

•3062771E Ol

-.1477295E Ol

-.I147_3_E O!

-.Ca26733E r)Q

.8988_50E O0

-.8029875E nO

.SeSO17_E O0

FX

COMPRESSION WALKING (NOMINAL)

SUBJECT A

SIN]

• O000000E O0

-.56648156 01

-.I022560E 01

-.1777905E O}

-.2072868E 0[]
.3207a?aE O0

.652_0?_E no

-.6163748E O0

AIN]

-.3383172E QI

.9515017E O0

-.7996971E Ol

.4179123E Ol

-.}659186E 01

.1817579E 01

.1641683E Ol

.229594gE 01

X = 47 tf = 13

FY

HIN]

• O000000E O0

-.1978343E O1
-.797204OE-01

.151_050E O0

.?O0|AgaE Ol

• 850aa55E O0
.159113gE Ol

-.1340044E 01



FX

SUBJECT B

N AiN] BIN] A(N)

0 -.5761903E OO ,OOO0000E O0 .32827OOE-O1
I .la31204E Ol -.fi783451E Ol .1015831E 01

2 .1193087E 01 -.3380235E 01 -.2618180E 01

3 -.1666497E O0 -.1127932E Ol .7952899E O1

4 •7102268E O0 -•6743582E OO •9Oa56_aE O0

5 -•5goag49E O0 -•965gI21E O0 -.4037455E 01

6 ,4405956E O0 -•8109723E O0 -•3887557E-01

7 -•gB14637E O0 -.7013053E O0 -.3494548E 01

COMPRESSION WALKING(MINIMUM)

FX

SUBJECTA

N AIN] BIN) AIN]

0 -.6493662E O0 •O000000E O0 •3403177E 01
1 •21_5242E O0 -•2591763E 01 •3180819E Ol

2 •1716506E 01 -•4626045E O0 -•1135306E 01

3 •663g_88E O0 -•4845764E 0(1 -•2544530E 01

4 -•3143089E O0 -•I018633E 01 •92a_g56E O0

5 •_1947_6E O0 -•1641646E O0 -.13aI561E 01

6 .3198032E O0 -•61612gSE 0() -.6052956F _0

7 •34_0423E-01 .122663qE O[1 .6_7_7E O0

FY

FY

X =4.92 tf = 1.28

B(N]

• O000000E O0
-•5047066E O0

• 767360gE 01

-.1334981E O0

-•4478544E 01

-•854781_E 01

-•114310_E 01

•3589091E Ol

X = 3.72 tf = 1.7

B(N]

•O000003E O0

• 8918947E O0

-•3821435E 01

-•550809_E O0

• I07371_E O0

-•_715811E O0

.9951988E OO

-.Bllg346E O0

SUBJECT B

FX

N AIN] BIN) AIN]

0 •2307_36E Ol •O000000E O0 •1077108E 01

1 -•1395301E Ol -•5520921E Ol -•6641650E-01

2 •5444210E-01 -•2630544E Ol •3121466E Ol

3 •9950081E O0 -•1398688E Ol -•2676151E 01

4 •5519672E O0 -•4449504E O0 •198_867E O0

5 •84__767gE O0 -•g860238E O0 -•1787693E 01

6 -•2377_12E O0 •3296467E-01 -.81749ggE-01

7 •1735168E O0 •5576596E O0 -•31648a3E O0

COMPRESSION WALKING (MAXIMUM)

SUBJECT A

FX

N A(N] 8(N] A(N]

0 .2941668E Ol •O000000E O0 -•1136447E Ol

I ,6395728E 01 -•1590169E O_ •I0657_4E gl

2 •3798976E Ol -.1566238E O! -.6760640E Ol

3 •3345731E Ol -.g342622E O0 •3543866E O1

4 -•g351692E O0 -•2209703E 01 -•87770_5E Ol

5 -•?949520E 01 -.3101_73E O! -,I_77106E 01

6 -•8199343E O0 -•2929389E Ol •7_6t17E 01

7 •2741830E qO -•156859qE nl •_3_809E-_I

X = 3.52 tf = 1.78

FY

_(N]

•O000000E O0

._139874E-01

.?_134642E Ol

-.2703545E Ol

-.8547480E O0

-.3838449E O0
•5052196£-01

• 1915_8_E O0

X=3.58 tf=1.13

FY

BIN]

.O000000E O0

• I_7655E O0

.1206908E 01

-.5459562E 01

• 7542574E 01

-.3642604E 01

• 2610041E nt

-.I16270_IE 01

157F



SUBJECTB
X = 4.82 tf = 0.9

'3
1

?

3
4

5

6
7

FX

A[N] B[N] A[N]

-,5502_32E 01 -O000000E O0 -,1700832E

,5420737E Ot -,5980257E 01 -.2905641E

,5630740E O0 -,3923436E 01 -,3885509E

,3267644E 01 -.1725833E Ol -.3355633E

.1533050E 01 -.2680869E 01 ,5008003E

,7633434E O0 .2371799E 01 -,1796701E

-.3283525E-01 -.7945254E O0 .71!0216E

-,1455365E Ol -.1638716E O! -.2431972E

FY

B[N]

Ol .O000000E O0

01 .7458030E O0

01 -.1560aOgE-01

Ol .16_3548E 01

Ol ,2532407_ 01

Ol .5155357E Ol

01 -,109803gE O0

01 .7913927E O0

A[N]

.1154519E

-,2258878E

.14aI323E

,4538_94E

.15903_9E

.106804_E

,2041416E

-.4046899E

GUIDED LOCOMOTION NORMAL TO FORCE TABLE (NOMINAL)

SUBJECTA

FX FY

_{N] A{N]

01 .OOOO000E O0 -,64Q3018E

01 .I026117E 01 .1566642E

01 -.1309141E 01 -.1626396E

O0 .7108374E O0 ._364_85E

O0 ,1478011E 01 ,1792830E

O0 .1113517E Ol .15390gBE

O0 .211Qa_oE O0 .172726_E

O0 .109_760E O0 .5563018E

X : 3.24 tf = 1.24

BIN]

01 .OOCO000E O0

01 -.624985gE 01
01 -.1379741E 01

O0 .9945327E-01

O0 -,7329063E-07

O0 -,2001t5_E O0

OO ,7439460E O0

O0 -.1641487E O0

SUBJECTB

FX

N AIN] 9[N] A[N]

<) -.,2112203E Ol .OOOO00OE O0 -.7480202E O1

t .2113010E 01 .5764481E 01 .971468,8E O0

? .1281066E 01 -.3343529E (31 .3187157E O1

3 -,7796408E-01 -,348P. 744E O0 -.2208236E O0

4 .16,35654E-01 -.1320133E Ol -.la82055E 0t

'5 -.1186QSIE Ol -.786619,4E O0 .16761_5E O0

6 .490_OoSE-01 .2693163E O0 -.1870930E O0

7 -,4644904E O0 -,2183502E O0 .27_4258E O0

N

0
1

3
4

5
6

7

LOCOMOTION NORMAL TO FORCE TABLE (MINIMUM)

SUBJECTA

A{N]

-.1812o14E 01
-.#243261E Ol

o1624093E 01

.a307883E-Ol

o144223_E O0

.6645189E O0

-._756340E-01

.1261302E O0

FX

B[NI

• 0000000 E O0

.3284297E 01

• 45g,4444E O0

-,3842954E O0

•8011239E O0

-.5021731E-01

. I056054E O0

•c3380775E O0

A[N]

-,6548926E 01

,e_SY606E O0

.34137_6E O0

,_491631E O0

,2P43961E O0

-,5690056E-01

,8749738E-01

-,5479388E-OI

FY

81N!

• O000000E O0

-.6359005E 01

-. 1773959E Ot

-,SQ37741E 00

.',197883 IE-O 1

.9198791E O0

-,5496896E-01

.668U117E O0

X = 3.18 tf = 2.5

FY

BIN]

• O000000E O0
-.3126337E Ol

• 3230416E O0

-.387_394E-O1
-.3291357E 00

-,7318179E-01

-.1231415E 00

-,I084412E O0

157G



SUBJECTB

FX FY

N A[N] B{N] AIN]

0 -.192075QE 01 -O000000E O0 -.777_590E 01

I -.1240214E 01 .499018_E 01 .2898573E 01

2 .184326_E 01 -.2830540E OO .3490118E GO

3 -.6341000E O0 .8460570E O0 .BS70_IgE O0

4 .7944557E O0 .5320297E OO -.0561262E O0

5 ,6096210E O0 -.4321966E O0 .l_g6612E O0

6 .3798334E O0 -.1724629E O0 -.7558311E-01

7 ,3971269E O0 -.2209996E O0 -.41515_7E O0

GUIDED ' --nunTun= unnuAI TO FORCE TABLE (MAXIMUM)LUUUIHM I lVn nvg==,, ......

SUBJECTA

A(N]

-.3049335E
".1007351E

.4928512E

.7435q30E
-.1593441E

.1411773E

-.1331861E

._557952E

N

0
I
?

3

4

5

6

7

FX

8(N] AtN]

Ol -O000000E O0 -.2315705E
02 . 1056617E 02 .1785114E

01 .3810138E Ol -. 3c)_o_3_E

O0 .6504396E O0 .2934274E

01 .2327_26E 01 . 122365(_E

01 .5177279E O0 "-. _926227E

01 ,370q287E OO .72109_9E

O0 . 1617266E O1 -.6562010E

X = 4.6 tf = 1.45

8[N]

•O000000E O0

-.5797371E 01

• 1721321E 01

-.9004872E O0

-._3_7426E O0

-.1644055E O0

-,3_22357E O0

.0194092E-01

X = 7.45 tf = 1.13

FY

O? .,'IOCO000E O0

02 -.1039!F,66E 02

01 -.9361406E 01

01 ,250420_E 01

Ol -.259&337E 01
O0 -._08U523E O0

O0 -.7950934E O0

O0 -.835011P_E O0

N

0
1

2

3

4

5

6
7

A[N]

-.3383323E

-.2122737E

.9555_91E

-.551999_E

.48787o9E

.21_2367E

.6910433E

.139qSo7E

A(N]

-.527_596E

-.2771B37E

.4884048E

-.193@204E

.973_810E

-.1723362E

-.724873_E

,1324485E

_[N1 A[N]

02 .O000cooE O0 .4515687E

01 .1467279E 02 .1965946E

Ol -.1100688E 02 -.1207921E

O[ .465536aE 01 -,_055098E

O0 .5504a53E 01 .3336315E

O0 .3460597E 01 -.7797U_BE

O0 .1464873E Ol .Sb/3795E

Ol ,2291040E Ol -,1606515E

SUBJECT B

FX

-]fN] A[N]

Ol ,O000000E O0 -.1487617E

01 .9969639E O| ,9031545E

01 -.3180_Pe2E Ol .22117gOE

01 .4766974E O0 -.3019861E

O0 -.9734548E O0 -.57_8793E

Ol -.3469242E O0 .1222336E

O0 .2174594E Ol -.2225538E

01 .2560665E O0 -.SQ30427E

MZ

HIN]

02 .O00000cE O0

02 -.4527214E 02

02 -.1244961E 02

O0 -.283593/E 01

01 -.7309878E Ol

01 -.1309104E 01

01 -.4830017E O0

01 -.6956055E 01

X=5.17 tf=l.1

_(N]

02 ,OOQOOOOE O0

01 -,95B671.]E 01

O0 ,3839308E 01

O0 -.Q49930_E O0

OO .I132151E Ol

01 -,67_022_E O0

O0 -.1799:)_E 01
O0 -.2502P2_E O0

157H



N

3
t

2
3

4

5

6
7

A[N]

-.3633709E
.77aO593E

.5320083E

-.2588856E
.1259596E

-.1218999E
-.1304375E

.1924145E

MX

@{N] AfN]

01 .0000000 E O0 .3047377E
O0 .008325_,E 01 .1135518E

01 -.8224839E O0 -.17308a6E

Ol -oi 120508E 01 .4686021E

01 -.6971446£ O0 -. 15623_2E
01 -°904874QE O0 o6934650E

01 .29539-_2E 01 .5849269E

01 .6813763E O0 -.5221751E

MZ

02 ° 0000000 E O0

02 -.4242104E 02

02 ,8481395E 01

01 -°1319137£ 01

01 .1638113E 01

01 .4463767E-01

O0 -.I032530E 02

Ol -oSlg4208E O0

GUIDED LOCOMOTION PARALLEL TO FORCE TABLE

SUBJECTA

(NOMINAL)

FX

N AIN] B[N] AINI
0 -.20556_5E 02 .O000000E O0 -.5379221E

t o2038862E Ot -.5239771E 01 .9014704E O)

? .30291376 01 -.13721626 O} .4913422E O0

3 .1357755E 01 .!936747E 01 -.967t564E O0

4 -.5635654E O0 .2297363E 01 ._46-)892E O0

5 .3286967E O0 -.3594240E-0! -.50_0005E O0

6 o456261tE O0 .223341_,E O0 .714437£E-01
7 .1332957E O0 .164a5626 O0 -.3337015E O0

SUBJECTB

FY

Ot

FX

A[N] 8IN] A[N]

0 .2326766E 01 .O000000E O0 .1977435E O0

1 ._729704£ 01 -.6422900E 01 -.4602189E 01
? .2473479E 01 .4QO3661E O0 -.5060071E O0

] -.Q314035E-02 .tS71alSE 01 .7542299E O0

4 .8056610E-01 -.1863652E O0 .t1Iz647E 01

5 .2083579E O0 .t343420E O0 .2225856E O0

6 .9768651E-01 -.2102294E O0 .5359276E-O!

7 .4286496E O0 .1521308E O0 -.364_238E O0

X=3.46 tf=l.8

.OUOOOOOE O0

.SS33599E O0

-.4084594E O0

-.512331tE O0

-.626_%_c O0

.5333002E O0

._94503_E O0

•31_b472E O0

X=4.92 tf=1.67

FY

H[N]

• O000000E O0

.7852754E 01

-.2236742E 01

-.7684_45t O0

.4673610E O0

o976_291E O0

o746059QE O0

.177175_E O0

GUIDED LOCOMOTION PARALLEL TO FORCE TABLE (MINIMUM}
SUBJECT A

FX

N AfN] gIN] A[N1

0 -.2080_73E 02 -0000000 £ 0[) -.4460q65E Ot
1 -.1324996E O0 .1330004E 01 .4435663E O0
2 .163432_E Ol -.1775204E 6)I -.2767587E 01

3 .39:lg304E O0 .t97aa34E-Ol -.1440P_2E O0

4 .1624201E Ol .1050530E ql .130_6C_E 01

5 -.3092344E-01 .7580746E QO .1274218E 01

6 .2041_51E O0 .1156105E O) -.42_027E-01

7 o6677179E-01 o4132654E O0 -.2434127E O0

X=2.365 tf=224
FY

• ,]O00(IooE O0
-.'_633992E C1

-. ?oC)5_61E-O 1

.33_3_84E O1

.1005_85E Ol

-._54555_6 O0

-._07649_F (]0

-.25028696 O0

1571



SUBJECTB
X = 3.58 tf = 138

N

0

t

2

3

4

5

6

7

N

0

I

2

3

4

5

6

7

A[N]

.4331689E

._049917E

.8494559E

,1073718E

,4676303E

,4015230E

.2348753E

.1659994E

FX

_[N] A(N]

01 .O000000E O0 -,1595351E

Ol -.4608275E OI -,1725715E

O0 -.2143765E Ol -.9439765E

Ol -.1217841E 01 .4007767E

O0 -.254541BE O0 .6_I_175E

O0 -.3141885E O0 -.3109640E
O0 -.5230038E-02 .2298093E

O0 -._280497E O0 .1169427E

GUIDED LOCOMOTION PARALLEL TO FORCE TABLE

SUBJECTA

A(N]

-.3835407E

.1910968E

.4802261E

.1509721E

-.2928430E
.6760193E

-.4061611E

-.8450725E

FX

8(N] A(N]

02 -O000000E O0 -.4464001E

02 -.3802839E 02 -_87392E

Ol -.1807973E 02 .613867_E

Ol .1312SOSE Ot -.S3_BSSE

Ol .SO53823E Ol .24_1564E

Ol .2886588E Ol -.3376658E

O0 .5604239E O0 .2621a64E

O0 -,1524376E O1 .1234750E

FY

H(N]

Ol .O000000E O0

O1 .3147596E Ol

O0 .1579907E O1

O0 -.3594153E O0

O0 -.73_5344E O0

O0 -.2821619E O0

O0 -.3949293E O0

O0 .1474355E O0

(MAXIMUM)

FY

X = 5.O3 tf = 1.28

_(NI

01 -OOOO000E O0
Ol .165768SE 02

O0 .1_46255E 02

O0 .7_7_0._E O0

01 -.4562110E Ol
Ol .122_05_E O0

O0 -.IOg2457E 01

OO -.I_21._51E O0

N

0
1

2

3

4

5

6

7

A(N]

-.5360984E

.1443373E

-.lgO7350E

.711_797E

.32_103gE

.1386626E

.801_554E

-.3861475E

MY

_(N] AIN]

Ol -O000300E O0 .5615919E

Ol -._613154E O1 -.2716552E

Ol .2756_55E Ol -.I090915E

O0 .2761771E Ol .3996375E

Ol -.7014497E O0 .I166933E

01 .4259193E Ol -.702207oE

Ol -.69fi6692E 01 -.2833242E

Ol -.5454_13E Ol .5250765E

MZ

B(N]

02 .O000000E O0

02 .1757790E 02

02 .1797547E 02

01 .8746623E O1

02 -.7271857E Ol

Ol -.9919562E Ol

01 -.5788703E O0

O0 .2585769E 01

N

0
1

2

3

4

5

6

7

AIN]

.5993165E

.1585175E

.7153278E

.5153784E

.2159038E

-.2074535E
-.1177708E

-.4161872E

FX

SUBJECT B

8(N] A(N)

Ol .O000000E O0 --9220o53E

Ol -.3074820E 02 .3626344E

Ol .3082317E O1 -.4863005E

Ol .5274905E Ol -.2773319E

O0 -.2229556E Ol .I137947E

01 .6976777E O0 .2693649E

Ol .I016248E O0 .1112824E

O0 -.925_185E O0 .4746299E

FY

X =4.15 tf = 1.5

8[N]

O0 -O000000E O0
Ol .lO_482PE 02

O1 -.1344635E Ol

01 -.2689172E 01

Ol -.3697907E Ol

Ol .7414591E O0

Ol -.199620_E 01

OO .133478_E 01

157J



CONSOLE OPERATION TORQUING (NOMINAL)

SUBJECTA

FX FY

X = 2.535 tf = 2.7

N A[N] BIN] AIN) 9(N]

0 .49757_2E O0 ,0000000 E O0 -.1086166E Ol .O000000E O0
I -.1549055E O0 .3257868E-01 -.S446934E O0 .3681894E O0

2 -.3841524E O0 -.7498177E O0 -.2815520E O0 ,J338225E Ol

3 -.a732652E O0 -.60003!5E OQ o5160708E O0 ,24_6776E O0

4 ,8315595E-01 -.540073_E OiJ -.3724050E-01 -,8309208E O0

5 .307a934E O0 .138087_E OR ,8250817E O0 -.11o5300E O0

6 .3261995E QO .4317187E O0 o43800_5E O0 .8836404E-01

7 .8804560E-0_ -.122918_E Oq -.2607670E-01 .1933347E-02

MZ

N AIN] e[h]

9 -.278448_E Ol .O00000cE O0
t -o90716_E O0 ,4835484E OO

2 .3548553E-01 ,3977746E 01

3 .330_625E 01 ,170t341E O1

4 .36AOO_3E O0 -,_4_9480E 0()

5 -.24t5759E OO -°43328?6£ O0

6 -.4057074E O0 -,_5o0703E OO

7 .42_aq_E _0 ,46agOSh£ O0

SUBJECTB

FX

N A[N| BIN) A[N]

0 ,2393@60 E O0 .O000000E O0 .3973947E O0
t -,1238533E O1 -,787_757E-02 .4146677E O0

2 -.6745269E O0 ,6296440E O0 -,44565_0E O0

3 ,2364176E-0! -._557600E O0 , 974560(1E-02

4 .4466782E O0 ,4720329E O0 -.t275774E OI

5 .6017929E O0 .312t532E-03 -.lal,_723E O0

6 -.5086377E O0 -,]56a204E O0 -.2524250E O0

7 .3954022E O0 -.P40:3_53E-01 ._693282E-01

CONSOLE OPERATION TORQUING (MINIMUM)

SUBJECTA

X = 2.56 tf = 2.4

FX

N AIN] 8IN1 A(N1

0 .4847_31E O0 .0900000E O0 -.9699578E O0
! -,4128045E O0 -.219t499E O0 -,3722530E O0

2 -.125131aE O1 -.7841033E O0 .3800705E-Or

3 -,2_73731E O0 -,t4_349E OI; -,4416411E-0!

4 ,9654880E OQ ,150_133E 0() -.56_25_4E N3

5 .12_5864E O0 .4395260E nO .2788325E 09

8 .13tg580E O0 -.gI6083OE-01 .a737856E O0
7 .1376946E O0 .1607685E O0 .a347515E-01

FY

• OO00003E O0

-,1567215E O0

-, __653566E O0

•?_09362E O0

.217683',.)E O0

,3101005E (10

-.7883326E O0

-,_722497E-0!

X=2.8 tf=2.81

FY

@IN)

• O00000OE O0
.SI88973E O0

,9075926E O0
-._237081E O0

-.4954_39E-0!

,2851733E O0

-.3241290E O0

.5651189E O0

157K



SUBJECTB X = 2.84 tf = 2.56

0
l

2

3
4

5

8
7

N

0
I

2

3
4

5

6
7

FX

A[N] _[N] A[N]

.3561652E O0 '0000000 E O0 .[I27748E O0

",3500270E O0 ".2932903E O0 .3297527E O0

-.7170542E O0 -.1730822E O0 ,1264670E O0

,1168438E O[ -,1353958E Ol ,854437gE-01

• 1674159E O0 -,4020696E O0 .42UBB34E-01

-.7114554E O0 -.5501717E O0 -,3384188E O0

o2343953E-01 -.3038217E-02 .1575764E O0

.2116751E O0 .7733783E-02 -.93917qgE-OI

A[N]

.8gII247E-oI

-.791466gE C1
-.2703741E 01

,18_g127E 01

.9978729E O0

•5870147E O_

,1082857E 01

-.3246[31E O0

A[N!
-,1416035E _2

,229692gE Ol

,4174525E O0

,5282714E O0

-,1706918E Ol

,1643526E OI

-.1366976E 01

• 8600342E O0

AIN]

-.3716462E O0

-.253884tE Ol

-.4473630E _0

.14_1686E Ol

.75_0810E O0

-.3936681E CO
o5057875E O0

,IOQ5938E O0

CONSOLE OPERATION TORQUING (MAXIMUM)

SUBJECTA

FY

FX

BIN]

• O000000E O0
• 4524555E CO

.736707tE [)(J

.4184902E 0(:

-.1373970E OJ
-.34_o771E O0

-.883_8_E O0

-.51_045-7E O0

FY

BIN]

• 0000000E 00

• toog104E 00

-.1785953E 00

• 5630443E 00

-.10bO830E O0

-.28_15E 00

-,448&_54E 00

• 1101126E 00

X=3.4 tf = 1.86

A(N] _(N]

-.2744_47E O0 .O000nooE O0

• 1799209E Ol -.1270666E Ol

-.837_875E OU .t507045C (31

-.9735a3qE OC] .7723633E Ol

-.36_467E 03 -.4616981E 00

.8666_56E-01 -.1251866_ O]

.8767gPQE 0;} -.1313973E 01
-.IOEO416E 01 -.677703_E O0

BIN] AINI _[N)

•O00noooE O0 -.I03261SE Ot .0000000£ O0

-,24289_7E O! .93407_5E O] -.3934a62E Ot

-.3340944E Ol .331200_E 01 .35_g400E O0

.47_4813E O! -.339438]E 01 .3597623E Ol

-.1201698E 01 -.4913049E O! .2130830E Ol

-.2763171E 0_} -.52858_E CO -.3498157E q]

,683464[E O0 .3347674E 0O ,15_7394E _1

-.5824371E-ot -.3316372E O0 ._732331E 00

SUBJECT B

FY

X = 3.52 tf = 1.96

8(N]

• 000000oE 00
• 2946049E 00

• g305342E no

.131055ffE 01

.1304596E Ol

.203qO?3E O0

.7676057E O0

.BI_38_E O0

FX

.39r}_5_eE oo .o00o000E 00

.B9_5195E 0O -._9g_477E UO

-.6o14_60E _0 .7_77_7]E-01

.49f)3006E O0 .7171_7_ O0

-,6117320E O0 .48_7_35E _0

-.4604804E-0t -.36_416_E O0

-.25_5445E 00 -,_79658E-01

-.2360_Q4E GO .7_79q_E O0

157L



N

0

t

2

,3
4

5

5

7

MX

A[N] _[N! AiN|

-,1081710 E 02 ,QOONO_oE O0 ,2464295E 01

.1082qolE Ol -.a85071_E O0 .6857815E 01

.128718qE 01 -.179605_E Ot -,268862_E Ol

-.1121815E Ol .309q33_E Ol -.5631q12E-01

,521117qE-91 -._0412q3E 0(? -,3477156E O1

-.3580416E O0 .I127324E Ol .14078_0E Ol

-,9434872E O0 -.8640886E ()(_ -.2071265E 01

,1245490E 01 ,9762147E OO ,6327723E on

BIN}

.OOOO000E O0

-.22flg306E fll

-.9410qO2E O0

,20692_3E Ol

-.9193837E O0

-,1217614E Oo
,a38503qE O0

-.6271310E-02

q

O

1

2

3
4

5

6
7

N

0
t
?

3
4

5

6

7

N

0
1

2

3
4

5

6

7

CONSOLE OPERATION PUSH-PULL (NOMINAL)

SUBJECT A

A[N]

,42305_4E

-,1762021E

-,535_211E

-,O53_861E
.1277274E

.6059671E

.3016764E

.4023122E

FX

BIN! A(N)

O0 ,O000000E O0 ,6680955E O0

O0 ,2661564E O0 -,701RIB4E-Ot

O0 ,2460704E O0 -,2121920E O0
0(3 -,3530969E O0 -,2864740E O0

O0 -.6510442E O[J -.84q7513E O0

O0 -.4274842E O0 .30aa391E O0
03 ,3826277E 0[] ,53160,_8E OrJ

O0 ,856_233E-OJ ,8866207E O0

SUBJECT B

FY

A[N)

-,1533984E 01

,1376420E-01

-,50_5240E O0

-,5334656E Oq

• 1609510E O0

._17042_E-01

.5378070E O0

.4870691E-01

FX

9IN1 A[N]

• O000000E O0 • 15526C)0E

-. 137120_E 0.'2. .6012606E.

-.O48,_;731E'01 .1076_87E

•5713519E O0 -,4118560E

-. 203_36066 O0 -.2_298Q@E

-.507_293E O0 -.72286aBE

-.6651955E O0 • I_?;_708E

.3t57633E-f]l -.366t815E

CONSOLE OPERATION PUSH-PULL (MINIMUM)

SUBJECT A

FX

AIN] 8IN] A[N!

• 1604057 E O0 .O00PO00 E O0 .1595124E Ol
,4070365E-01 ,1280123E O0 ,4067538E O0

-.28a50I_E O0 .156554_E ,00 -.1739714E O0

-.7381qlBE OO -.559405_E O0 .2304'510E O0

• 4920755E CO -,77_1403E-c)| -.46R2534E 03

,2718817E-01 .749a476E-Ot .23_002aE O0

-,8139684E-01 -.q29aPlSE-O! .2760467E O0

-,6271915E-01 • 1420565E or) -.7053417E-01

X = 2.92 tf = 2.13

8[NI

oO000000E O0

,1068193E O0
.4gg128qE 90

.1183028E 01

.6658584E O0

-.345_730E 90

,4156757E O0
-,3426881F O0

X = 2.92 / tf = 2.15

FY

8[_]

Ot .OnOOOOOE O0
09 ,7662183E-01

01 .St83aoRE O0

O0 -.5549913E O0

Ol -.214561 rE-01

O0 -.3420375E O0

01 -.2179960E qO

qo -.4231972E Of)

FY

X=2.63 tf=2.2

8IN}

•O000000E O0
-, 2589123F-.-01

,3830954E O0

• 428PO29E O0

-,2301686E O0

-,4517572E O0

-.2309515E O0
• _214082_-C 1

157M



SUBJECT B

X = 2.7 tf = 2.34

FX

N AIN] BIN! A[N1

0 -.8219727E O0 .O000000E O0 .g745178E O0
[ .2e14166E O0 .3040396E-O? -.5654003E-01

2 ,1395956E O0 ,4192671E-01 ,1378757E O0

3 -.9025703E-01 -.Q491132E-OJ .1274663E O0

4 .4600002E O0 -,75_1009E Off .3096126E O0

5 -.2138101E O0 -.1450243E 0{) .4655025E O0

6 ,_944083E-02 -,6373166E O0 ,6_72645E O0

7 -,6387823E O0 -,4823944E-0l -,2_5658E O0

CONSOLE OPERATION PUSH-PULL (MAXIMUM)

SUBJECTA

FX

FY

FY

U(N)

• O00000]E O0
-.105565_F O0

.52078766 O0

.6354273E O0

,1083362E O1

• 4qq9541E O0

-,1372993F. O0

-.726567QE O0

X =2.88 tf = 1.62

N A[N] BIN! AIN] 8[N]

0 ,1036145E 01 -O00OOOOE O0 ,1067_75E 01 .OOOO000E O0
1 ,3780306E O0 -,137777_E OO ,7068440E O0 -,3956871E O0

2 o8076762E-01 -,4891636E O0 ,199_OB7E 01 -.6441467E O0

3 -,1349265E 01 -,8386754E O0 ,198_4_9E Ot -.6510628E-01

4 -.6657740E OO .7385821E-01 -.d781821E OU -.3311516E O0

5 .1867914E-02 .9571507E-O] -,1829205E Ol .?29a314E 01

6 -.9904251E-0! -.1141618E O0 -.6a37448E O0 .166774aE O1

7 , -.aO26307E O0 .611S231E-01 -.I)94971E 01 ,4500_86E O0

SUBJECT B

AIN!

0 -,a449978E O0
I -,559_332E O0

2 -*OO6708qE O_

3 .144_088E O0

4 o3068412E O0
5 ,5410348E O0

6 -,1115327E O0
7 -,1733162E-0t

FX

BIN! AINI

• OOOO003E O0 .90_7906E
• 1616336E O0 .25695_1E

,4345633E O0 -.6265159E

,1664_0_E OO -,19_6193E
,3966077E O0 -,1068006E

-,3581920E O0 -.2366423E

-,368_055E-01 -.650_216E

.2_SSO54E O0 -.2258275E

FY

X = 3.98 tf = 1.56

H[N]

O0 ,O000009E nO
O0 -.780753_E-0t

O0 ,_84311_E O0

01 .106129_E Ol

01 .7616063E O0

O0 .5543879E O0

O0 .7090592E O0

O0 .1363475E _I

CONSOLE OPERATION LATERAL SLIDING (NOMINAL)

SUBJECT A

FX

N AIN] 8[NI AfN)

0 -o3119516E O0 .O000000E O0 .1721521E

1 ,1783940E O0 .4419596E O0 ,7520241E

_- -,sg3q35__E O0 -,6443154E O0 -.4_55642E

3 .4890981E-O1 .1219397. E O0 .10a7453E

4 -,2430217E O0 -,9217003E or/ -.90_1832E

5 •767.0350E-01 .3117406E-02 -. 577._SnSE

6 .2574755E or} .873gO58E-01 .33092_3E

7 .9616847E-01 -. 1500580E O0 .6655612E

X =3.45 tf = 1.71

FY

9IN]

Ol .O000000E O0
0") -,_02386qE O0

Of] .9303659E NO

OU ,479_139E O0

O0 • 1247R10E-02

O0 -.1787151E O0

09 .437760_E UO

O0 .1267950E O0

157N



SUBJECTB

N

0
I

4

5

6

7

AfN]

,B662682E

-,_5_3278E O0
-.7404530E O0

-.I039905E OI

,9371350E-01

,3103614E O0

,1856452E O0
,1880523E-01

FX

O0
gll

CONSOLE

X = 2.565 tf = 2.45

FY

BIN] AIN] 8[N1

• O000009E O0 ,9454294,E O0 ,O000003E O0
,7195874E-02 ,3685179E O0 -.5659093E-01

.154757_E OO .5N7_lglE 09 -.2567055E O0
,1469452E-0_ ,203.3413E O0 -,35o6716E O0

,5311835E 0(_ -,2_70281E OU ,24QOI12E O0

.)2309I_E O0 -.8187161E O0 .4970954E O0

,6311a75E-_! -,2704733E-01 ,2230506E OQ
,1623861E Qr) -,144g_53E Of) -.309799gE O0

OPERATION LATERAL SLIDING (MINIMUM)

SUBJECTA
X = 2,47 tf = 2.4

N

0
I

2

3

4

5

6
7

N

0
1

?
3

4

5

6
7

A[N|

-,2503401E
,2548376E

-,6810334E

-,6734311E

,2539362E

o3268480E

.1800862E

,1453t50E

FX

A[N]

,7499605E-01

-,3463165E-01

-,4730709E O0

-,3660092E O0

.4413229E O0

,4130372E-01

,I014_37E OA

,2333330E On

8[N] A[N|

O0 .O000000E O0 .1006255E 01
O0 .2379242E O0 .2595349E 90

O0 ,2685624E OO ,1433520E O0

On -,8297293E O_ .7#52058E-01

O0 -,2051709E OC -,a543169E O0

O0 -.25_8143E O0 -.2AIt817E O0

O0 .1226115E O0 -,1024593E O0

O0 -.1671153E O0 .1615g35E O0

SUBJECT B

FX

B[N] A[N]

•0000000£ O0 ,1321463E 01

-,3771595E-02 ,2.S7glISE O0

-.1055113E O0 .114_763E 01

-,528_.100. E O0 ,3523820E O0

.2950789E O0 -.2036997E O0

• 1082605E O0 -,4_714625E O0

, 1326940E-OI -,305713aE O0

-.8305025E-01 ,4_Sg673E O0

FY

HIN)

• O000000E O0
-.193a79OE O0

• I064565E O0

• 6g94772E O0

•2103_66E-01

• 1313928E O0

• 1816853E 00.

._051a57E-01

X = 2.56 tf = 2.55

FY
BIN)

• O000009E O0
-•aO77998E-01

-•_.066753E-02

-,430461 IE-Ol

.103109_E O0

• 1823793E-01

•26 1830.8E-0 1

.6041536E-01

1570



N

0
I

?_

3

4

5

6

7

CONSOLE OPERATIONI LATERAL SLIDING (MAXIMUM)

SUBJECT A

A(N|

"-5106240E O0

-.gOO6091E O0

".3045731E 01

-18_7_32E 01

-.2829503E-01

--2856713E-01
• 6343102E O0

• 1728534E O0

FX

8(N)

•O000000E O0

-. 4473447E-01

•6507767E O0

• 1490275E 91

.503_808E O0

-.2186201E O0

-.4600938E O0

.541_954E n_

A(N]

.5684875E

.2744150E

.1582462E

-.233486_E

-.1609284E

-.l_]t42E

.7194771E

.2327537E

FY

X = 435 tf = 1.32

H[N]

O0 .NOOOOOOE O0
01 .50_4549E O0

01 -.2525104E Ot

01 .76_9355E 01

01 -.IG1772_E 01

O_ -.atgsi_56E OO

O0 -.13_4430E n]

QO .I0_271_E f)l

N

0

1
2

3

4

5

6
7

A(N]

.1245957E

.2279634E

.4278223E

-.17q8010E

-.1265874E

-.150_335E

.5431726E

.5331Q47E

B(N) A[N)

Ol -O000000E O0 -.2393470E 01
O0 -.3098680E Ot .6184350E O1

Ol -.1645QOIE 01 .70n3197E Ol

Ol .4577724E 01 -.640978_E Ol

Ol -.120SoOoE 01 -.3197008E 01

O0 .OSO5473E O0 -.3777822E-01

O0 -.1107214E 01 .174_138E Or

O0 .998S580E O0 -.553_174E O0

MX

@IN]

• O000000E O0

• 2711695E Ot

-.2111751E 01

• 42_5535E 01

-.3513579E Ol

• ._657820E O0

-. 1921630E 01

.2786580E 01

N

0

1

2

3

4

5

6

7

A(N]

".7776873E O0

-.50N5503E O0

-.1343537E Ol

.I0_5830E 01

.q6agg21E O_

-.6463_84E-Ot
-.1434358E O0

.1735793E OO

FX

SUBJECTB

8IN1

•O000000E O0

.1490955E CO

.5498agSE O0

-.1608781E O0

,4054941E O0

-.504o246E-0!

-.1730646E Of)

-.153572_E Or_

A(N!

.1?27857E

.1_14674E

.448_379E

.4345605E

-.7506671E

-.2924297E

-.1975238E

.2_30752E

FY

X = 3.19 tf = 1.96

_IU]

Ol .O000r)O!)E OO
O0 -.2357_72E CO

O0 -.7999025E O0

On .1646_21E 01.

O0 .I050241E Ol

OO -.964q?10E-03

30 -.2753POSE QO

OO -.]859580E O0

0

I

2

3

4

5

6

7

A(N!

".2142536E 02
.5117357E On

.75a4682E O_

.3884096E O0
• 1325570E On

-.145346_E O0

-.2832396E OO

.3487589E On

MX

BIN]

•O000000E O0

-. 1458323E 0!

-.5000921E 0{)

• 16ar_77_E 01

.51.8P87.?.E O0

• 16_2372E-0!

-,327F) IIOE O0

. _.577037E-0_

.36669_1E

.57_26QSE

.340597gE

".17300_IE

-.20029gTE

.t7972_E

-.7213131E

._99787E

01 .OOO000_E O0
_0 -.288530_E O0

Ol -.203685gE O1

Ol .2177055E Ol

Ot .88554_3E-01

OA .t553757E O0

O0 -.4085675E O0

Oq -.2175668E O0

157P



N
0
I

3
4
5
6
7

N

0

1

2

3

4

5

6

7

AIN]

-,4653311E Ol

• 2102031E Ol

,6681940E O0

• IIOaO92E Ol

,3634614E O0

-,3780017E O0

.8189174E O0

,sg37725E O0

FX

FX

A[N]

•2892810E O0

.1804618E 01

-.1329146E Ol

•8770047E O0 -.

-,5580182E O0 -.

-.1113097E O0

• Ii25474E O0

,157797gE O0

A[N]

.1641549E Ol

-.7192818E-Ot

.2675666E O0

-.2017672E O0

.3807424E-01

-.6188004E-01

-,4279752E-01

• 1556571E O0

FX

TRUNK BENDING EXERCISE

SUBJECT A

8[NI A

•O000000E O0 -.375

• 71461qgE Ol -.728

• 4009931E Ol .363

• II0_762E Ol ,613

-,1289353E 01 ,121

• 8988452E O0 .146

• 6081158E O0 -,It3

-,5352114E O0 -,602

SUBJECT B

IN]

3295E

3694E

7924E

3996E

9109E

IIOOE

6850E

1212E

B[N!

O000000E O0

1856716E 01
1246549E O]

1215083E O0

1976_51E O0

8116340E O0

4691311E OO

I165222E O0

A[N]

• 6077995E 01

-.6772755E 01

.2440927E 01

-.209a311E Ol

.22_7867E Ol

-.3777876E-01

-,9563062E O0

,3877607E-01

NECK BENDING EXERCISE

SUBJECTA

BIN]

• O000000E O0

-.3229925E O0

.2098827E-01

".4515343E O0

• 2977571E O0

.564t398E-Ol
.437_244E-02

,795481dE-01

A[N]

• IOI4912E Ol
-.4108682E O0

-.31764_2E O0

.lld287dE-Ol

-,I07603_E O0

.1844995E 03

.7681173E-01

-.37_BtISE-Ol

FY

X = 5.43 If = 1.1

8[N]

Ol .O000000E O0

Ol .3035166E 02

Ol .3623810E 01
01 -.6043183E O0

01 -.1462908E 01

Ol -.2256296E O0

O0 -.1611839E 01

O0 .2900781E O0

FY

FY

X = 4.91 tf = 0.9

8[NI

• _O00000E O0
.5688486E el

-.6322109E O0

.t853529E Ot

,I095996E 01

-.1569768E 01

.1381086E O0

._687436E O0

X = 5.57 tf = 1. 1

8[N]

• O000000E O0
-.5526764E O0

.6987659E O0

.8986612E-02

-.1349771E O0

-.8440260E-01

.7516tOgE-Ot

-.66t734?E-Cl

A[N]

• 1169358E 01
• 2505734E O0

-.6042474E-01

.6655348E-01

-.1167124E 0_}

.3536612E-01

-,599250JE-Ot

-,2158562E-01

FX

SUBJECT B

BIN]

•0000000 E O0

-,1419519E 01

.3612!64E O0

.9398648E-01

.329_487E-01
-.183t744E O0

.1801803E-01

-.Sg42792E-Ol

A[N}

-.4766573E O0

-.1180917E 01

.1392877E 01

.2877853E O0

.7308721E-01

•2949124E O0

.5734877E-01

-.2281672E-oI

FY

X = 5.74 tf = 1.3

BIN]

oO000000E O0

-.3751384E O0

.8787441E O0

-.7346694E-01

-.1644435E O0

-,23gOtISE O0

-._283950E O0

-.1880663E O0
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N
0
1

2

3

4

5

6

?

ROMNG EXERCISE

SUBJECTA

A(N|

.2395224E 01

-.2865462E O0

• 2123107E O0
-.7021Q44E-02

• 4378669E O0

.gQ54999E-OI

.7389744E-01

=,!88023tE O0

FX

BIN]

• O000000E O0

-.2003585E O0

.8160800E O0

.9565362E-01

-.7220135E-Or

-. 3239700E O0

-. t505252E O0
.2470926E O0

SUBJECTB

A(N]

.1334484E

-.370995bE

.4280145E

-.I071739E

.II02169E

.1717184E

-.126087gE

.1211011E

FX

N A(N] 8(N1 AIN]

0 -.3129101E O0 -O000000E O0 .7970937E
I .3053973E Ol -.782;_633E 01 .I15_?168E

2 -._203795E Ol -.1784629E O0 -.1I_0422E 02
3 -.7440490E O0 .1430636E O1 -.1174160E Ol

4 .3651592E O0 .4638482E O0 -.3076431E OO

5 -.5321434E-01 .2258575E O0 .1699148E Ol

6 .2121029E O0 .1981375E O0 -.2166q2IE O0

7 • 3319220E-01 .2482690E O0 .3101712E-Ot

N

0
I

2

3

4

5

6
7

N

0
1

2

3
4

5

6

7

FY

PEOAL ERGOMETER ENOURANCE EXERCISE

SUBJECT A

X = 3.52 tf = 1.79

AtN]

-.6454114E Ol

• 8702507E O0
-.2640793E 01

• 5020317E Ol

-,457440gE O0

.1886795E Ol

-,1133604E 01

-.1151673E 01

AIN]

-.3953363E 02

.1189437E 02

-•4702751E 01

.4226995E Ol

.2429237E Ol

".2655233E Ol

-.5871464E Ol

-.5552261E 01

BIN]

Ol .O000000E O0

O1 -.IO043g_E Ol
01 .6996166E Ol

Ot .2146986E Ot

Ol .1254983E Ol

O0 .15255_5E 01

Ol .3548464E O0

01 -•5572349E O0

FY

01

O_

FX FY

B(N! A(N]

oO00OO00E O0 -d387gO 4E O0

•2107053E 01 -.2fi6qSO7E O0

-.9523686E O0 .6765625E O0

-.3766690E O0 -.4933611E Ol

-.8578671E O0 .20159_6E O0

-o3500426E O0 .2616226E Ol

-,1501313E 01 -.6646753E O0

-,7067355E O0 .3785031E O0

MX MZ

8(N] AtN]

• O000000E O0 .1406144E 02
• 1638774E 02 -,3858227E 01

-.2065207E 02 .744240_E 01

-.1022797E 02 -,6514701E O1
-,8047095E 01 .I00_61.9E 01

-.4594117E O1 .169227aE Ol

-.9106304E 01 -.458Aga_E O0

-•2330170E Ol .6105577E-01

X = 7.9 tf = 0.95

• O000000E O0
-.4001603E 01

-.6405P99E O0

• 2978_14E Ol

.7915040E O0

.IOb2842E Ol

.5675473E O0

o9718_00E O0

X = 5.3 tf = 1.2

8(N!

• O000000E O0
-.3828413E Ol

• 5583725E O1

• 4354073E O0
• 401_h75E Ol

o1152078E 01

-.2982785_ O0

.4962097E O0

8[N]

• O00000_E O0
-.Q58428QE 01

.7005856E Ol

.3877757E Ol

• 9916173E 01

• 4201356E O0

.4296494E 01

• 1_01748E Ol

157R



N

N
1
2

3

5

5

7

SUBJECTB

FX

A[N] 8[N] AIN]

-.1665100E 02 .O000000E O0 .3638695E O[

-.1749597E 01 .314gIo4E 01 .3014324E Ol

-.3634891E Ol -.1470585E Ol -.2532038E 01

-,1059948F 01 -.1793541E O1 -.28024_2_ O1

-,6320751E O0 -°6703763E O0 ,6363374E-01

• I091856E 01 ,2743142E O0 ,1640_9,5E Ot

o1340024E O0 -._OOO125E O0 -o745':)349E O0

,5148973E O0 .a138_g61E O0 ,146_050E O0

FY

X = 6.07 tf = 1.04

giN]

• O000000E O0
-.q746566E 01

.4304681E Ol

.1487065E Ol
-.t5324d4E O[

,1215727E Ol
• 17002gOE Ol

-.271_13aE-01

MX

N A(N} 8[N) A(N]

0 -,9205212E 02 .O000000E O0 ,55769EoE

1 -.1619420E 01 .2690422E 02 .26061f)3E

2 -.3891380E O0 -,3473823E 01 .2655_80E

3 ,2712718E O0 ,2910083E 01 -.2603744E

4 -,8634468E O0 ,2960495E Ol .2650694E

5 -.149671gE 01 ,8573468E O0 -.1061847E

6 .5831086E O0 -.9346094E O0 -,2369817E

7 .1004144E Ol ",4092773E-01 -.5608253E

OSCILLATION ACCELERATION EXERCISE

SUBJECTA

FY

N A(N] BIN}

0 .2937158E 02 .O000000E O0

I -.1366_61E 02 -o7498413E 02

2 °309_5355E O! .1734293£ 02

3 .5866945E Ol .I04QOJOE 02

4 -.1353158E 02 o7755100E O0

5 .689_747E Ot °2977746E Ol

6 --4=JS_339E Ol. ,1481.365E 01

7 ,2291455E Ol ,Ig76046E 01

SUBJECT B

8(N)

02 .OOOO000E O0
O! -.2193533E 02

O0 °6824752E 01

01 ,1028_43E 02

01 .6949837E O0

OO .186300gE 01

O0 .2797257E 01

O0 -,7678898E O0

X = 4.6 If = 1.3

FX

N A(N} 8(N] A[N]

0 .6365990E 01 -O000000E O0 .2677897E 02

I ,1343426E O! .2700alTE 01 -.2761800E 02

2 ".4060874E Ol .4604527E 01 .7503447E 01

3 -,1243756E 01 ,1762246E 00 °1553714E 02
4 -.3089433E 01 -,3070748E Ol -.4147637E-01

5 .3079503E O0 .2331340E 01 -.4288708E 01

6 ,1528478E Ol .1959721E O0 -,8050275E O0

7 -,2558666E O0 -.5043245E O0 .2517707E 01

X = 5.44 tf = 1,16

FY

BIN]

• O000000E O0

-,6527632E 02

-.1008291E 02

-.7872_80E 01

.1428776E 02

-.2430093E 01

,1443095E Ol

-.1494025E Ol

157S



FX

FULL LENGTH BOBY EXERCISE

SUBJECTA

N A[N] 8[NI A[NI

0 -.217glBOE Ol -O000000E O0 .2852597E Ot "
! -,I798941E Ol -.1331_3qE OI -.2103657E O?

2 o99_3074E Ol .4764136E Ol .7152745E 01

3 ,8881088E O0 .388tOO4E O0 o48_7608E 01
4 -o2134950E Ol -,2660507E Ol -,2163_32E Ol

5_ -,_125266E 01 ,9251130E O0 .6441236E 01

6' -,1854840E 01 ,t281823E O0 -,286059RE O0

7 -,8674830E O0 ,4162422E O0 ,3006380E 01

FY

X = 2.142 tf = 2.95

BIN]

• O000000E O0

,729897tE 01
,2697807E O0

-,St68667E 01

.I34g:_3_E Ol

.3466q66E Ol

.4901683E O[

._482070E 01

N A[N]

0 -,1707763E

I ,1332291E

2 -,2574010E

3 ,goa132IE
4 ,14385=7E

5 ,2865t55E

6 -*I641641E

7 ,9815287E

BZ

BIN)

01 *0000000£ O0

02 .6043429E 01

02-.2210112E 02

Ol -,SCOg552E OI

O] .iI63176E 02
O0 -,763536tE O1

01 -,1305039E 01

O1 -.123045OE O1

N

0

t

2

4

5

6

7

A[N]
,1041t43E

,3773060E
,5549457E

.I086306E

.1750366E
-.2477706E

-.7530832E

-.6277RSOE

SUBJECTB

FX

BIN] AIN]

OI ,O00OO00E O0 ,4724964E OI

OI -o5972038E O0 -.,270641IE 02

01 .487652gE Ol -,4066340E 01

OI -, 1580282E OI ,2_42984E-01

Ol .6852106E O0 ,5136558E OI
Ol -,88t3784E O0 ,5166363E Ol

O0 -.4297938E O1 .II62195E Ol

O0 -,1872496E 01 .4794323E OI

FY

x=2. 

BIN]

• O000000E O0

.1278229E 01

.3_38680E Ol

-,4100423E OI

• 3738527E Ol

• 3622083E OI

-,2343123E 01

-,6570245E O0

N

0
I

3

4

5

6
7

A[N]

-.3339137E

.7890869E
-.1143414E

.7155954E

-.7536326E

,7325454E

-,50075=8E

,1014437E

B[N!

01 oO000000E O0

O0 ,2771584E Ol

02 -,2488643E 02'

Ol ,1264808E 02

01 -.4408976E Ol

Ol -o1546311E O0

O0 ,5244460E Ol

01 .1337367E Ol

157T



N

0
I

2

3
4

5

6

7

A[N]

-,1725784E

-.3710578E

.9350233E

.4231_71E

,2578079E

,7015887E

-°8887_08E

-.7O93167E

FX

TRUNK ROTATION EXERCISE

SUBJECT A

BIN] AIN}

Ol ,O000003E O0 ,1624842E Ol

Ol ,3529522E Ol ,5234984E O0
OA -°559t683E O0 -.13611ggE O!

O! .1477246E O! .3236063E Ol

01 .822801gE O0 -.II75162E Ol

O0 -.1738171E _I .2S36487E O0

O0 -.tO63894E Ol -.4n14846E-02

CO -,45061_0E O0 -o8_747_8E-01

FY

X = 3.29 tf = 2.02

BIN]

• O000003E O0

-.1267677E O1
.30qog33E Ol

.4856399E O0

-°938541_E O0

-.206032gE Ol

.5073482E O0

-.8886214E O0

N

0
1

2

3
4

5

6
7

AIN]

-.2029173E

=.3aqO1_4E

,2575961E

.4438971E

.5968688E

-.4879_73E

-.1274730E

.2729360E

FZ

_[N] AINI

02 .O000000E O0 -.1885521E 01

01 .1204g77E 02 °1708530E O_
01 .3441768E 01 ,2324636E-01

Ol -,5322719E O0 -.4973665E 01

O0 .2908233E O0 -.5aog63_E O0

O0 ,7347250E O0 -;80_16Q4E O0

O0 .572492CE O0 -.4tog435E O0

_0 .3804122E O0 -.6082773E _[)

MY

_INI

,O000000E O0
-.4210506E O_

-.1759498E O0

-.tO77845E Ol

".2560934E _I

".1431nlTE 01

-.1792155E 01

-.1837685E O0

N

'0
1

2
3

4

5

6

7

FX

A[N]

-. tg6580IE Ol

-. 1225564E 01

.1587734E 01

-. 169886gE 01

.2342322E O0

-,3006gO3E O0

,1014197E Ol

-,1701345E O0

SUBJECT B

BIN]

• O000000E O0
.3439548E O1

-.1776896E Ol

-.2241450E OO

,6438887E O0

-,7110833E O0

.2673981E O0

.6758626E O0

AtN]

-.1410419E

.5576442E

-,1229128E

.5gos105E

.1542112E

-.blII764E

-.4342Ogle

-,6386356E

FY

X=277 tf=2.15

BIN]

O0 .O000000E O0

O0 -.2169632E O0

O0 -.2981391E O0

O0 -.1492954E O0

O0 -.1160318E O0

OO ._892516E O0

O0 -.7574520E O0

O0 .6152685E O0

N

0
1

2

3
4

5

6
7

AIN]

-.1689664E

-.1757709E

.5584679E

.1207037E

.2940262E

.9359537E

-,1098047E

-,3558562E

FZ

BIN]

Ol -O000000E O0
01 .1861426E O1

O0 -.1146035E 01

Ol -.2512233E O0

O0 -,1560595E O0

O0 -.I052257E 01

O0 -°2465255E O0

O0 -.34_9330E O0

AINI

-.1303854E
,115528gE

-.6303835E

-.2027053E

-.bSOtOIgE

-.6278677E

.700%2_4E

-.8292745E

MY

8IN)

Ol .O000000E O0

02 -.2870937E 02

Ol .853q168E-01

Ol -.1241338E Ol

00 °1411270E 01

O0 .5762P37E O0

O0 .560_274E O0

O0 .7757660E O0

157U

L



APPENDIX D

PHYSICAL BODY MEASUREMENTS

The following measuren%ents taken of the two subjects are the inputs for

the MAID program written by NASA at Langely Research Center. The results

of this program give the various segment inertias and center of mass loca-

tions used in the analytical work for obtaining the forces of some of the

simple segment motions.

Fig. D-1 shows the model of the various body segment pivot points and

mass centers. It should be pointed out that tl_e reference axis for the man
model is not the same as used for the tests. To make both the reference

systems compatible requires a simple translation of the origin with a rota-
tion of 90 ° about 1 axis,

Because the man model is assumed to be symmetrical, only the param-

eters to describe the segment pivot points and mass centers of the right arm

and leg are given. The pivot points and segment mass centers are assumed

to be contained in the YMI - ZMI plane.

Tables D-I and D-II present the segment masses and inertias obtained

from the MAID program. The segment numbers correspond to the numbering

given in fig. D-I.

Physical Body Measurements of Subject A

The physical body measurements of Subject A are as follows:

(I) Ankle circumference: minimum circumference

of right ankle

(Z) Axiallary arm circumference: arms lowered,

upper arm circumference at arm pit

(3) depth at level of greatest rearwardButtock depth:

protrusion

(4) Chest breadth: measured at level of nipples

(5) Chest depth: measured at level of nipples

(6) Elbow circumference: measured with arm extended

Values

6 in.

13.5 in.

I0.2 in.

14.1 in.

10.6 in.

I0. 75 in.



YMI

ZUA

XMI

(Right arm)

Ru rUL

,i

® ( ) } rL,

(Right. leg)

ZUL

• SegmentPivot Points

i_ SegmentMass Centers

zT - Torso segmentradial (1)

rUA-- Right upper arm segment
radial (2)

rLA--_Right lower arm
segmentradiaI (4)

rULZ Right upperleg
segment radial (6)

rLL= Right lower leg
segment radial (8)

RUA- Right upper arm
segment length (2)

RUL_--Right upper leg
segment length (6)

YUA=-Shoulderpivot displacement
(YMI axis)

ZUA _ Shoulderpivot displacement
(ZMI axis)

YUL--- Upper leg pivot displacement

(YMI axis)

ZUL =_ Upper leg pivot displacement

(ZMi axis)

Figure D-1. Segment Pivot Points and Mass Centers
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(7)

(8)

(9)

(i0)

(II)

(lZ)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(zo)

(21)

(2Z)

Fist circumference: measured with tape

passing over thumb and knuckles

Forearm length: measured between radiale

and stylion

Foot length: longest foot dimension (standing)

Knee circulnference: measured at _mAd-patella

level (standing)

Head circumference: maximum circumference

of head (above brow ridges)

Hip breadth: maximum breadth of hips (standing)

Shoulder (acromial) height: vertical distance

from floor to right acron%ion (standing)

Sitting height: subject sitting in chair with

knees bent at right angles (distance measured

from sitting surface to top of head)

Sphyrion height: vertical distance from floor

to sphyrion (subject standing with legs

s lightly apart)

Stature: subject standing, vertical distance

from the floor to top of the head

Substernale height: vertical distance from

floor to substernale point at lower edge of

breastbone (standing)

Thigh circumference: circumference of thigh

just below lowest point in gluteal furrow

(s tanding)

Tibiale height: vertical distance from floor to

right tibiale (standing)

Trochanteris height: vertical distance from

floor to trochanterion on right side (standing)

Upper arm length: length of upper arm between

acromion and radiale

Weight: nude weight

Value s

11.5 in.

II in.

10.4 in.

14.75 in.

56 in.

34.5 in.

3.5 in.

67.75 in.

47.75 in.

24.5 in.

18 in.

35 in.

13.5 in.

172 ib
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(Z3)

(24)

(25)

Waist breadth: minimum horizontal distance

between points marking the most lateral

indentation in the abdominal region (standing)

Waist depth: anterior to posterior distance of

the abdomen at the level of the most lateral

indentation waist points (standing)

Wrist circumference: minimum circumference

of wrist, measured with tape just proximal of

the styloid process of the ulna.

Value s

11.4 in.

9.65 in.

7.25 in.

Physical Body Measurements or Subject B

Following are the physical body measurements of Subject B:

(9)

(i0)

(ll)

(i) Ankle circumference: minimum circumference

of right ankle

(g) Axiallary arm circumference: arms lowered,

upper arm circumference at arm pit

(3) Buttock depth: depth at level of greatest

rearward protrusion

(4) Chest breadth: measured at level of nipples

(5) Chest depth: measured at level of nipples

(6) Elbow circumference: measured with arm

extended

(7) Fist circumference: measured with tape

passing over thumb and knuckles

(8) Forearm length: measured between radiale

and stylion

Foot length: longest foot dimension (standing)

Knee circumference: measured at mid-patella

level (standing)

Head circumference: maximum circumference

of head {above brow ridges)

Values

8.75 in.

IZ. 75 in.

i0.8 in.

13.2 in.

10.8 in.

II.0 in.

11.25 in.

11.5 in.

II.Z in.

15 in.

23.5 in.
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(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

Hip breadth: maximum breadth of hips

(s tanding )

Shoulder (acromial) height: vertical distance

from floor to right acromion (standing)

Sitting height: subject sitting in chair with knees

bent at right angles (distance measured from

sitting surface to top of head)

Sphyrion height: vertical distance from floor to

sphyrion (subject standing with legs slightly

apart)

Stature: subject standing, vertical distance from

the floor to top of the head

Substernale height: vertical distance from floor

to substernale point at lower edge of breastbone

(standing)

Thigh circumference: circumference of thigh

just below lowest point in gluteal furrow

(s tanding )

Tibiale height: vertical distance from floor to

right tibiale (standing)

Trochanteric height: vertical distance from floor

to trochanterion on right side (standing)

Upper arm length: length of upper arm between

acromion and radiale

Weight: nude weight

Waist breadth: minimum horizontal distance

between points marking the most lateral

indentation in the abdominal region (standing)

Waist depth: anterior to posterior distance of

the abdomen at the level of the most lateral

indentation waist points (standing)

Wrist circumference: minimum circumference

of wrist, measured with tape just proximal of

the styloid process of the ulna

Values

14.3 in.

59.25 in.

37 in,

3.5 in.

70.5 in.

48.5 in.

23 in.

18 in.

35. 25 in.

14 in.
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10.4 in.

7.25 in.


